Level D Correlation to Grade 3 Common Core State Standards for Mathematics

Operations and Algebraic Thinking (3.OA)

objects	can be exp	For pressed as 5	r example, c	1 K K lescribe a c	context in wi	hich a total i	number of			
Lesson	72	73	74	75	76	77	79	80	81	82
Exercise	•1 `	- 1	•, •	. <u>4</u> • •	•••	••,		▼/.	* _ *	v ₁ .
Lesson	83	84								
Exercise	•	. √. ▼	_/^- ▼	_ ∕ ▼	, / • `	_/T>	_/ ¥	110 ••/ •	111 	112 مع ، ۲۰۰۹

Operations and Algebraic Thinking (3.OA)

Represent and solve problems involving multiplication and division.

3. Use multiplication and division within 100 to solve word problems in situations involving equal groups, arrays, and measurement quantities, e.g., by using drawings and equations with a symbol for the unknown number to represent the problem.

Lesson	72	73	74	75	76			

Lesson	101	102	103	104	105	106	107	108	109	110
Exercise	101.1,	102.1,	103.1,	104.1,	105.1,	106.1,	107.1,	108.1,		
	101.8,	102.8,	103.7,	104.6,	105.7,	106.3,	107.3,	108.6,		
	101.9	102.9	103.9	104.7,	105.8	106.7,	107.6,	108.7,		
				104.8		106.8	107.8			

Operations and Algebraic Thinking (3.OA)

Solve problems involving the four operations, and identify and explain patterns in arithmetic.

9. Identify arithmetic patterns (including patterns in the addition table or multiplication table), and explain them using properties of operations. For example, observe that 4 times a number is always even, and explain why 4 times a number can be decomposed into two equal addends.

Number and Operations in Base Ten (3.NBT)

Use place value understanding and properties of operations to perform multi-digit arithmetic.

Measurement and Data (3.MD)

Measurement and Data (3.MD)

Represent and interpret data.

4. Generate measurement data by measuring lengths using rulers marked with halves and fourths of an inch. Show the data by making a line plot, where the horizontal scale is marked off in appropriate units—whole numbers, halves, or quarters.

Lesson	125	126	127	128	129	130	
Exercise	125.2 ET Q q	0001k100	1 255.55.2 84	66q0001k1	0 0 1 255.5 53	6275 2/F3 0T -	7./F3 801.37.00708 cm BT2961 Tc /F3 9 T40.9(5)-46.2(.)-68.6(2 ET Q q (

Geo-5(MainP2.8(etnP20.9(r)-16.6(y)1.3(()9(Ma3)5.6(.)22.2(G)16.1())]TJ 0 0Q0 647.95.99k0 1 35.

Operations and Algebraic Thinking (3.OA)

Multiply and divide within 100.

7. Fluently multiply and divide within 100, using strategies such as the relationship between multiplication and division (e.g., knowing that $8 \times 5 = 40$, one knows $40 \div 5 = 8$) or properties of operations. By the end of Grade 3, know from memory all products of two one-digit numbers.

Lesson	31	32	33	34	35		36	37	38	39		40
Exercise	31.6	32.3	33.5	34,4	35.4		36.1, 36.4, 36.7	37.1, 37.8	38.1, 38.4, 38.9	39.1, 39.8		40.1, 40.5
Lesson	41	42	43	44	45		46	47	48	49	Τ	50
Exercise	41.1, 41.3	42.1	43.1, 43.8	44.1, 44.9	45.1, 45.8	B	46.1, 46.7	47.1, 47.5, 47.7	48.1, 48.7	49.1, 49.7	Ī	50.1, 50.7
	-		·		·						Τ	
						T						
										/	1	

Number and Operations in Base Ten (3.NBT)

Use place value understanding and properties of operations to perform multi-digit arithmetic.

1. Use place value understanding to round whole numbers to the nearest 10 or 100.

Exercise 23.4 24.7 25.4 26.4 27.3 28.2 29.2 30.7, 30.8 31.8 32.6, 32.9	Lesson	23	24	25	26	27	28	29	30	31	32
	Exercise	23.4	24.7	25.4	26.4	27.3	28.2	29.2	30.7, 30.8	31.8	32.6, 32.9

Lesson	33	34	36	37	38	40	42	43	48	49
Exercise	33.6	34.10	36.7	37.8	38.9	40.8	42.9	43.9	48.7	49.7

		1	1			

Lesson	41	42	43	44	45	46	47	48	49	50
Exercise	41.2, 41.8	42.6, 42.9	43.7, 43.8	44.2, 44.8,	45.3, 45.4,	46.2, 46.3,	47.2, 47.6,	48.2, 48.7	49.2, 49.4,	50.2, 50.3,
				44.9	45.8	46.7	47.7		49.6, 49.7	50.5, 50.6,
										50.7

Lesson	51	52	53	54	55	56	57	58	59	60
Exercise	51.2, 51.4,	52.5, 52.7	53.5, 53.7,	54.4, 54.8	55.5, 55.8	56.6, 56.8	57.5, 57.6,	58.4, 58.6,	59.5, 59.6,	60.5, 60.6,
	51.6, 51.7		53.8				57.8	58.8, 58.9	59.7, 59.8,	60.8, 60.9
									59.9	

Lesson	61	62	63	64	65	66	67	68	69	70
Exercise	61.2, 61.4, 61.5, 61.10	62.6, 62.8, 62.10	63.5, 63.7, 63.9	64.7, 64.9	65.7, 65.9	66.5, 66.6, 66.8	67.6, 67.7, 67.7	68.5, 68.9	69.8	70.6, 70.8
	61.5, 61.10	02.10	03.9			00.0	07.7			

Number and Operations in Base Ten (3.NBT)

Use place value understanding and properties of operations to perform multi-digit arithmetic.

3. Multiply one-digit whole numbers by multiples of 10 in the range 10-90 (e.g., 9×80 , 5×60)

Meaurem

 $\left\{ \begin{array}{c} \mathbf{x}_{1} = \mathbf{1} \left\{ \mathbf{x}_{2} = \mathbf{1} \right\} \\ \mathbf{x}_{1} = \mathbf{1} \left\{ \mathbf{x}_{2} = \mathbf{1} \right\} \\ \mathbf{x}_{2} = \mathbf{1} \left\{ \mathbf{x}_{2} = \mathbf{1} \right\} \\ \mathbf{x}_{1} = \mathbf{1} \left\{ \mathbf{x}_{2} = \mathbf{1} \right\} \\ \mathbf{x}_{2} = \mathbf{1} \left\{ \mathbf{x}_{2} = \mathbf{1} \right\} \\ \mathbf{x}_{2} = \mathbf{1} \left\{ \mathbf{x}_{2} = \mathbf{1} \right\} \\ \mathbf{x}_{2} = \mathbf{1} \left\{ \mathbf{x}_{2} = \mathbf{1} \right\} \\ \mathbf{x}_{2} = \mathbf{1} \left\{ \mathbf{x}_{2} = \mathbf{1} \right\} \\ \mathbf{x}_{2} = \mathbf{1} \left\{ \mathbf{x}_{2} = \mathbf{1} \right\} \\ \mathbf{x}_{2} = \mathbf{1} \left\{ \mathbf{x}_{2} = \mathbf{1} \right\} \\ \mathbf{x}_{2} = \mathbf{1} \left\{ \mathbf{x}_{2} = \mathbf{1} \right\} \\ \mathbf{x}_{2} = \mathbf{1} \left\{ \mathbf{x}_{2} = \mathbf{1} \right\} \\ \mathbf{x}_{2} = \mathbf{1} \left\{ \mathbf{x}_{2} = \mathbf{1} \right\} \\ \mathbf{x}_{2} = \mathbf{1} \left\{ \mathbf{x}_{2} = \mathbf{1} \right\} \\ \mathbf{x}_{2} = \mathbf{1} \left\{ \mathbf{x}_{2} = \mathbf{1} \right\} \\ \mathbf{x}_{2} = \mathbf{1} \left\{ \mathbf{x}_{2} = \mathbf{1} \right\} \\ \mathbf{x}_{2} = \mathbf{1} \left\{ \mathbf{x}_{2} = \mathbf{1} \right\} \\ \mathbf{x}_{2} = \mathbf{1} \left\{ \mathbf{x}_{2} = \mathbf{1} \right\} \\ \mathbf{x}_{2} = \mathbf{1} \left\{ \mathbf{x}_{2} = \mathbf{1} \right\} \\ \mathbf{x}_{2} = \mathbf{1} \left\{ \mathbf{x}_{2} = \mathbf{1} \right\} \\ \mathbf{x}_{2} = \mathbf{1} \left\{ \mathbf{x}_{2} = \mathbf{1} \right\} \\ \mathbf{x}_{2} = \mathbf{1} \left\{ \mathbf{x}_{2} = \mathbf{1} \right\} \\ \mathbf{x}_{2} = \mathbf{1} \left\{ \mathbf{x}_{2} = \mathbf{1} \right\} \\ \mathbf{x}_{2} = \mathbf{1} \left\{ \mathbf{x}_{2} = \mathbf{1} \right\} \\ \mathbf{x}_{2} = \mathbf{1} \left\{ \mathbf{x}_{2} = \mathbf{1} \right\} \\ \mathbf{x}_{2} = \mathbf{1} \left\{ \mathbf{x}_{2} = \mathbf{1} \right\} \\ \mathbf{x}_{2} = \mathbf{1} \left\{ \mathbf{x}_{2} = \mathbf{1} \right\} \\ \mathbf{x}_{2} = \mathbf{1} \left\{ \mathbf{x}_{2} = \mathbf{1} \right\} \\ \mathbf{x}_{2} = \mathbf{1} \left\{ \mathbf{x}_{2} = \mathbf{1} \right\} \\ \mathbf{x}_{2} = \mathbf{1} \left\{ \mathbf{x}_{2} = \mathbf{1} \right\} \\ \mathbf{x}_{2} = \mathbf{1} \left\{ \mathbf{x}_{2} = \mathbf{1} \right\} \\ \mathbf{x}_{2} = \mathbf{1} \left\{ \mathbf{x}_{2} = \mathbf{1} \right\} \\ \mathbf{x}_{2} = \mathbf{1} \left\{ \mathbf{x}_{2} = \mathbf{1} \right\} \\ \mathbf{x}_{2} = \mathbf{1} \left\{ \mathbf{x}_{2} = \mathbf{1} \right\} \\ \mathbf{x}_{2} = \mathbf{1} \left\{ \mathbf{x}_{2} = \mathbf{1} \right\} \\ \mathbf{x}_{2} = \mathbf{1} \left\{ \mathbf{x}_{2} = \mathbf{1} \right\} \\ \mathbf{x}_{2} = \mathbf{1} \left\{ \mathbf{x}_{2} = \mathbf{1} \right\} \\ \mathbf{x}_{2} = \mathbf{1} \left\{ \mathbf{x}_{2} = \mathbf{1} \right\} \\ \mathbf{x}_{2} = \mathbf{1} \left\{ \mathbf{x}_{2} = \mathbf{1} \right\} \\ \mathbf{x}_{2} = \mathbf{1} \left\{ \mathbf{x}_{2} = \mathbf{1} \left\{ \mathbf{x}_{2} = \mathbf{1} \right\} \\ \mathbf{x}_{2} = \mathbf{1} \left\{ \mathbf{x}_{2} = \mathbf{1} \left\{ \mathbf{x}_{2} = \mathbf{1} \right\} \\ \mathbf{x}_{2} = \mathbf{1} \left\{ \mathbf{x}_{2} = \mathbf{1} \left\{ \mathbf{x}_{2} = \mathbf{1} \right\} \\ \mathbf{x}_{2} = \mathbf{1} \left\{ \mathbf{x}_{2} = \mathbf{1} \left\{ \mathbf{x}_{2} = \mathbf{1} \right\} \\ \mathbf{x}_{2} = \mathbf{1} \left\{ \mathbf{x}_{2} = \mathbf{1} \left\{ \mathbf{x}_{2} = \mathbf{1} \right\} \\ \mathbf{x}_{2} = \mathbf{1} \left\{ \mathbf{x}_{2} = \mathbf{1} \left\{ \mathbf{x}_{2} = \mathbf{1} \right\} \\ \mathbf{x}_{2} = \mathbf{1} \left\{ \mathbf{x}_{2} = \mathbf{1} \left\{ \mathbf{x}_{2} = \mathbf{1} \left\{ \mathbf{x}_{2} = \mathbf{1} \right\} \\ \mathbf{x}_{2} = \mathbf{1} \left\{ \mathbf{x}_{2} = \mathbf{1} \left\{ \mathbf{x}_$

Meaurem

Meaurem

Meaurem

