The ARC Center Tri-State Student Achievement Study

A Report of the ARC Center at The Consortium for Mathematics and Its Applications (COMAP)

Sheila Sconiers, Project Director COMAP

Andy Isaacs The University of Chicago

Traci Higgins TERC James McBride, Statistician The University of Chicago

Catherine Randall Kelso THE UNIVERSITY OF ILLINOIS AT CHICAGO

Funded by the National Science Foundation, Proposal No. ESI-9729328

This study was prepared with the support of the National Science Foundation. However, any opinions, findings, conclusions, and/or recommendations herein are those of the authors and do not necessarily reflect the views of the NSF.

©2003 COMAP, Inc.

Table of Con en s

1	3
1. The the	5
1.13 ···································	5
1.20 ()]_ /	5
1.3 × · · ·	
2	
2.1] .	
2.2 L · · · · ·	
2.3,	
2.4] . as . b] . b] . · -] . , b a] .	
2.5],], .	11
3. , ₁	11
3.1, b] en [],], b e] en	12
3.2, balen di fare	16
3.3, 12 - 1 - 12,	1
3.4, b a b a b a	20
4., ~ 1 en	20
5. 1. 1. 1.	21
m l	23
Ar LL	2
m Li	33

), 114

1.1 C

الدينان برين المعن بيند بان من المان من بين من الاندان برين من بالاندان برين بان برين من من بينان بنال برين المان المان المراسمين العام بالمان المراس المان بالمان بالمان المراس بالمان المراس بالمان بالمان من بين من ما مان من برين المان المال بالمان المان المان المان بالمان بالمان المان المان المان المان الما بالمان من مان المان ا

- · All wall w' i a that is
- $[\lambda_1]_{\lambda_1} [\mathbf{a}]_{\lambda_1} [\mathbf{b}_{\lambda_1} \mathbf{a}]_{\lambda_1} [\mathbf{b}_{\lambda_1} \mathbf{a}]_{\lambda_1} [\mathbf{b}_{\lambda_1} \mathbf{a}]_{\lambda_1} [\mathbf{b}_{\lambda_1} \mathbf{a}]_{\lambda_1}]_{\lambda_1}$
- , 1] which we creation in the passing [mail in a
- · inc a cab] ib] a h co is the
- aller a comparite we
- really second and the
- · infilie in each in the states in the states of the state

 $\begin{bmatrix} \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} \\ \mathbf{A} & \mathbf{A} & \mathbf{A} \end{bmatrix} \begin{bmatrix} \mathbf{A} & \mathbf{A} & \mathbf{A} \\ \mathbf{A} & \mathbf{A} \end{bmatrix} \begin{bmatrix} \mathbf{A} & \mathbf{A} & \mathbf{A} \\ \mathbf{A} & \mathbf{A} \end{bmatrix} \begin{bmatrix} \mathbf{A} & \mathbf{A} & \mathbf{A} \\ \mathbf{A} & \mathbf{A} \end{bmatrix} \begin{bmatrix} \mathbf{A} & \mathbf{A} & \mathbf{A} \\ \mathbf{A} & \mathbf{A} \end{bmatrix} \begin{bmatrix} \mathbf{A} & \mathbf{A} & \mathbf{A} \\ \mathbf{A} & \mathbf{A} \end{bmatrix} \begin{bmatrix} \mathbf{A} & \mathbf{A} & \mathbf{A} \\ \mathbf{A} & \mathbf{A} \end{bmatrix} \begin{bmatrix} \mathbf{A} & \mathbf{A} & \mathbf{A} \\ \mathbf{A} & \mathbf{A} \end{bmatrix} \begin{bmatrix} \mathbf{A} & \mathbf{A} & \mathbf{A} \\ \mathbf{A} & \mathbf{A} \end{bmatrix} \begin{bmatrix} \mathbf{A} & \mathbf{A} & \mathbf{A} \\ \mathbf{A} & \mathbf{A} \end{bmatrix} \begin{bmatrix} \mathbf{A} & \mathbf{A} & \mathbf{A} \\ \mathbf{A} & \mathbf{A} \end{bmatrix} \begin{bmatrix} \mathbf{A} & \mathbf{A} & \mathbf{A} \\ \mathbf{A} & \mathbf{A} \end{bmatrix} \begin{bmatrix} \mathbf{A} & \mathbf{A} & \mathbf{A} \\ \mathbf{A} & \mathbf{A} \end{bmatrix} \begin{bmatrix} \mathbf{A} & \mathbf{A} & \mathbf{A} \\ \mathbf{A} & \mathbf{A} \end{bmatrix} \begin{bmatrix} \mathbf{A} & \mathbf{A} & \mathbf{A} \\ \mathbf{A} & \mathbf{A} \end{bmatrix} \begin{bmatrix} \mathbf{A} & \mathbf{A} & \mathbf{A} \\ \mathbf{A} & \mathbf{A} \end{bmatrix} \begin{bmatrix} \mathbf{A} & \mathbf{A} & \mathbf{A} \\ \mathbf{A} & \mathbf{A} \end{bmatrix} \begin{bmatrix} \mathbf{A} & \mathbf{A} & \mathbf{A} \\ \mathbf{A} & \mathbf{A} \end{bmatrix} \begin{bmatrix} \mathbf{A} & \mathbf{A} & \mathbf{A} \\ \mathbf{A} & \mathbf{A} \end{bmatrix} \begin{bmatrix} \mathbf{A} & \mathbf{A} & \mathbf{A} \\ \mathbf{A} & \mathbf{A} \end{bmatrix} \begin{bmatrix} \mathbf{A} & \mathbf{A} & \mathbf{A} \\ \mathbf{A} & \mathbf{A} \end{bmatrix} \begin{bmatrix} \mathbf{A} & \mathbf{A} & \mathbf{A} \\ \mathbf{A} & \mathbf{A} \end{bmatrix} \begin{bmatrix} \mathbf{A} & \mathbf{A} & \mathbf{A} \\ \mathbf{A} & \mathbf{A} \end{bmatrix} \begin{bmatrix} \mathbf{A} & \mathbf{A} & \mathbf{A} \\ \mathbf{A} & \mathbf{A} \end{bmatrix} \begin{bmatrix} \mathbf{A} & \mathbf{A} & \mathbf{A} \\ \mathbf{A} & \mathbf{A} \end{bmatrix} \begin{bmatrix} \mathbf{A} & \mathbf{A} & \mathbf{A} \\ \mathbf{A} & \mathbf{A} \end{bmatrix} \begin{bmatrix} \mathbf{A} & \mathbf{A} & \mathbf{A} \\ \mathbf{A} & \mathbf{A} \end{bmatrix} \begin{bmatrix} \mathbf{A} & \mathbf{A} & \mathbf{A} \\ \mathbf{A} & \mathbf{A} \end{bmatrix} \begin{bmatrix} \mathbf{A} & \mathbf{A} & \mathbf{A} \\ \mathbf{A} & \mathbf{A} \end{bmatrix} \begin{bmatrix} \mathbf{A} & \mathbf{A} & \mathbf{A} \\ \mathbf{A} & \mathbf{A} \end{bmatrix} \begin{bmatrix} \mathbf{A} & \mathbf{A} & \mathbf{A} \\ \mathbf{A} & \mathbf{A} \end{bmatrix} \begin{bmatrix} \mathbf{A} & \mathbf{A} & \mathbf{A} \\ \mathbf{A} & \mathbf{A} \end{bmatrix} \begin{bmatrix} \mathbf{A} & \mathbf{A} & \mathbf{A} \\ \mathbf{A} & \mathbf{A} \end{bmatrix} \begin{bmatrix} \mathbf{A} & \mathbf{A} & \mathbf{A} \\ \mathbf{A} & \mathbf{A} \end{bmatrix} \begin{bmatrix} \mathbf{A} & \mathbf{A} & \mathbf{A} \\ \mathbf{A} & \mathbf{A} \end{bmatrix} \begin{bmatrix} \mathbf{A} & \mathbf{A} & \mathbf{A} \\ \mathbf{A} & \mathbf{A} \end{bmatrix} \begin{bmatrix} \mathbf{A} & \mathbf{A} & \mathbf{A} \\ \mathbf{A} & \mathbf{A} \end{bmatrix} \begin{bmatrix} \mathbf{A} & \mathbf{A} & \mathbf{A} \\ \mathbf{A} & \mathbf{A} \end{bmatrix} \begin{bmatrix} \mathbf{A} & \mathbf{A} & \mathbf{A} \\ \mathbf{A} & \mathbf{A} \end{bmatrix} \begin{bmatrix} \mathbf{A} & \mathbf{A} & \mathbf{A} \\ \mathbf{A} & \mathbf{A} \end{bmatrix} \begin{bmatrix} \mathbf{A} & \mathbf{A} & \mathbf{A} \\ \mathbf{A} & \mathbf{A} \end{bmatrix} \begin{bmatrix} \mathbf{A} & \mathbf{A} & \mathbf{A} \\ \mathbf{A} & \mathbf{A} \end{bmatrix} \begin{bmatrix} \mathbf{A} & \mathbf{A} & \mathbf{A} \\ \mathbf{A} & \mathbf{A} \end{bmatrix} \begin{bmatrix} \mathbf{A} & \mathbf{A} & \mathbf{A} \\ \mathbf{A} & \mathbf{A} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{A} & \mathbf{A} & \mathbf{A} \\ \mathbf{A} & \mathbf{A} \end{bmatrix} \begin{bmatrix} \mathbf{A} & \mathbf{A} & \mathbf{A} \end{bmatrix} \begin{bmatrix} \mathbf{A} & \mathbf{A} & \mathbf{A} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{A} & \mathbf{A} & \mathbf{A} \end{bmatrix} \begin{bmatrix} \mathbf{A} & \mathbf{A} & \mathbf{A} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{A} & \mathbf{A} & \mathbf{A} \end{bmatrix} \begin{bmatrix} \mathbf{A} & \mathbf{A} & \mathbf{A} \end{bmatrix} \begin{bmatrix} \mathbf{A} & \mathbf{A} & \mathbf{A} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{A} & \mathbf{A} & \mathbf{A} \end{bmatrix} \begin{bmatrix} \mathbf{A} & \mathbf{A} & \mathbf{A} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{A} & \mathbf{A} & \mathbf{A} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{A} & \mathbf{A} & \mathbf{A} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{A} & \mathbf{A} & \mathbf{A} \end{bmatrix}$

1.2 - R

 $\begin{array}{c} \mathbf{A} \quad \mathbf$

 $= \lim_{t \to \infty} \left[\left[\left[\frac{1}{2} + \frac{1$

• $[\mathbf{u}_{A}] = [\mathbf{u}_{A} + \mathbf{u}_{A} + \mathbf{u}_{A}] = [\mathbf{u}_{A} + \mathbf{u}_{A} + \mathbf{u}_{A} + \mathbf{u}_{A}] = [\mathbf{u}_{A} + \mathbf{u}_{A} + \mathbf{u}_{A} + \mathbf{u}_{A} + \mathbf{u}_{A} + \mathbf{u}_{A}] = [\mathbf{u}_{A} + \mathbf{u}_{A} + \mathbf{u}_{A}] = [\mathbf{u}_{A} + \mathbf{u}_{A} + \mathbf{u}_$

• $\mathbf{u} \mathbf{c}$], $\mathbf{v} \mathbf{c}$, \mathbf{c}] $\mathbf{c} \mathbf{c}$, \mathbf{c} , \mathbf{a} , \mathbf{c} , \mathbf{d} , \mathbf{c} , $\mathbf{$

 $\begin{array}{c} \begin{array}{c} & & & \\ & & \\ & & \\ \end{array} \end{array} \begin{array}{c} & & \\ & & \\ \end{array} \end{array} \begin{array}{c} & & \\ & & \\ \end{array} \end{array} \begin{array}{c} & & \\ & & \\ \end{array} \end{array} \begin{array}{c} & & \\ & & \\ \end{array} \end{array} \begin{array}{c} & & \\ & & \\ \end{array} \end{array} \begin{array}{c} & & \\ & & \\ \end{array} \end{array} \begin{array}{c} & & \\ & & \\ \end{array} \end{array} \begin{array}{c} & & \\ & & \\ \end{array} \end{array} \begin{array}{c} & & \\ & & \\ \end{array} \end{array} \begin{array}{c} & & \\ & & \\ \end{array} \begin{array}{c} & & \\ & & \\ \end{array} \end{array} \begin{array}{c} & & \\ & & \\ \end{array} \begin{array}{c} & & \\ & & \\ \end{array} \end{array} \begin{array}{c} & & \\ & & \\ \end{array} \begin{array}{c} & & \\ & & \\ \end{array} \end{array} \begin{array}{c} & & \\ & & \\ \end{array} \end{array} \begin{array}{c} & & \\ & & \\ \end{array} \begin{array}{c} & & \\ & & \\ \end{array} \end{array} \begin{array}{c} & & \\ & & \\ \end{array} \begin{array}{c} & & \\ & & \\ \end{array} \end{array} \begin{array}{c} & & \\ & & \\ \end{array} \begin{array}{c} & & \\ & & \\ \end{array} \end{array} \begin{array}{c} & & \\ & & \\ \end{array} \end{array} \begin{array}{c} & & \\ & & \\ \end{array} \begin{array}{c} & & \\ & & \\ \end{array} \end{array} \begin{array}{c} & & \\ & & \\ \end{array} \begin{array}{c} & & \\ & & \\ \end{array} \end{array} \begin{array}{c} & & \\ & & \\ \end{array} \begin{array}{c} & & \\ & & \\ \end{array} \begin{array}{c} & & \\ & & \\ \end{array} \end{array} \begin{array}{c} & & \\ & & \\ \end{array} \end{array} \begin{array}{c} & & \\ & & \\ \end{array} \end{array} \begin{array}{c} & & \\ & & \\ \end{array} \end{array} \begin{array}{c} & & \\ & & \\ \end{array} \end{array} \begin{array}{c} & & \\ & & \\ \end{array} \end{array} \begin{array}{c} & & \\ & & \\ \end{array} \end{array} \begin{array}{c} & & \\ & & \\ \end{array} \end{array} \begin{array}{c} & & \\ & & \\ \end{array} \end{array} \begin{array}{c} & & \\ & & \\ \end{array} \end{array} \begin{array}{c} & & \\ & & \\ \end{array} \end{array} \begin{array}{c} & & \\ & & \\ \end{array} \end{array} \begin{array}{c} & & \\ & & \\ \end{array} \end{array} \begin{array}{c} & & \\ & & \\ \end{array} \end{array} \begin{array}{c} & & \\ & & \\ \end{array} \end{array} \begin{array}{c} & & \\ & & \\ \end{array} \end{array} \begin{array}{c} & & \\ & & \\ \end{array} \end{array} \begin{array}{c} & & \\ & & \\ \end{array} \end{array}$

1.3

ا المانية الماني مانية المانية الم المانية الم $\begin{array}{c} 1 & , \\ p & 1 & 1 \\ p$

2.

2.1 h

- I t . . A . . . t . t ()),] . 3
- M (, t) C $(, \cdot)$ $(, \cdot)$ $(, \cdot)$
- I , t B (5.), 3(] , 3(] , 1 , 1
- $t A \rightarrow t t + t t L = (-),], 4$

2.2 h

- • [a, b] = [a, b] = [a, b] = [b] = [
- $\mathbf{Y}_{\mathbf{1}}[\mathbf{u}_{\mathbf{1}}, \mathbf{u}_{\mathbf{1}}] = \begin{bmatrix} \mathbf{u}_{\mathbf{1}} & \mathbf{u}_{\mathbf{2}} & \mathbf{u}_{\mathbf{1}} & \mathbf{u}_{\mathbf{1}}$

2.3 1 1

 $[\mathbf{A}] [\mathbf{A}] = \mathbf{A} [[\mathbf{A}] [\mathbf{A}] [\mathbf{A}] [\mathbf{A}]] = \mathbf{A} [\mathbf{A} [\mathbf{A} [\mathbf{A}] \mathbf{A} [\mathbf{A}] \mathbf{A} [\mathbf{A}] \mathbf{A} [\mathbf{A}] \mathbf{A}] \mathbf{A} [\mathbf{A}] \mathbf{A} [\mathbf{$

- 1. (A = [A = [A = A] + [
- 2. $\sum_{k=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{1}{200} \sum_{i=1}^{n} \frac{1}{200} \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{1}{200} \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{1}{200} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{$
- 3. $3 \cdot (3 \times 1) \cdot (3 \times 1)$

2.4 $\mathbf{h} = \mathbf{R}$ $\mathbf{h} = \mathbf{C}$ $\mathbf{h} = -\mathbf{C}$ $\mathbf{h} = \mathbf{h}$

الالكانية من إلى إلى المراجعة إلى إلى المراجعة إلى المراجعة المراجعة المراجعة المراجعة المراجعة المراجعة المراجع - المراجعة من المراجعة المراجعة من المراجعة المراجعة المراجعة المراجعة المراجعة المراجعة المراجعة المراجعة المر - المراجعة من مراجعة المراجعة ا - المراجعة من مراجعة المراجعة ا - المراجعة مراجعة المراجعة الم

• • - λ]] γ_{3}] · λ_{1} (λ_{1} · λ_{2} γ_{4} (λ_{1} · λ_{2} · β_{4}] β_{4}] · β_{4}] · β_{1} · β_{2} · β_{1} · β_{2} · β_{1} · β_{2} · β_{1} · β_{2} ·

Shi] dan pina () Linaa si kana jia] in () a [in () s

-] $\lambda_{AA} = \lambda_{A} =$

 $\begin{bmatrix} i & i & b & -i & a \end{bmatrix} = \begin{bmatrix} i & i & b \end{bmatrix} + i & a \end{bmatrix} \begin{bmatrix} i & a & c & b & b \end{bmatrix} = i & a \end{bmatrix} \begin{bmatrix} i & b & a \end{bmatrix} = i & a \end{bmatrix} \begin{bmatrix} i & b & a \end{bmatrix} = i & a \end{bmatrix} \begin{bmatrix} i & b & a \end{bmatrix} = i & a \end{bmatrix} \begin{bmatrix} i & b & a \end{bmatrix} = i & a \end{bmatrix} \begin{bmatrix} i & b & a \end{bmatrix} = i \end{bmatrix} \begin{bmatrix} i & b & a \end{bmatrix} = i \end{bmatrix} \begin{bmatrix} i & b & a \end{bmatrix} = i \end{bmatrix} \begin{bmatrix} i & b & a \end{bmatrix} = i \end{bmatrix} \begin{bmatrix} i & b & a \end{bmatrix} = i]] = i] = i]] = i]] = i]] = i]] = i] [i]] = i]] =$

 $\begin{bmatrix} 1 & 1 & 3\% \\ 2 & 1 & 1 \\ 1 & 1 & 2 \\ 1$

3. - R

 $\begin{bmatrix} \mathbf{A} \mathbf{A} - \mathbf{L} \\ \mathbf{L} \end{bmatrix} \mathbf{i} \quad \mathbf{A} \end{bmatrix} \begin{bmatrix} \mathbf{i} & \mathbf{e} \mathbf{i} & \mathbf{e} \mathbf{i} & \mathbf{i} \end{bmatrix} \mathbf{i} \mathbf{A} \mathbf{i} = \mathbf{i} \begin{bmatrix} \mathbf{i} & \mathbf{e} \mathbf{i} & \mathbf{e} \mathbf{i} \end{bmatrix} \mathbf{i} \begin{bmatrix} \mathbf{i} & \mathbf{e} \mathbf{i} & \mathbf{e} \mathbf{i} \end{bmatrix} \mathbf{i} \begin{bmatrix} \mathbf{i} & \mathbf{e} \mathbf{i} & \mathbf{e} \mathbf{i} \end{bmatrix} \mathbf{i} \begin{bmatrix} \mathbf{i} & \mathbf{e} \mathbf{i} & \mathbf{e} \mathbf{i} \end{bmatrix} \mathbf{i} \begin{bmatrix} \mathbf{i} & \mathbf{e} \mathbf{i} & \mathbf{e} \mathbf{i} \end{bmatrix} \mathbf{i} \begin{bmatrix} \mathbf{i} & \mathbf{e} \mathbf{i} & \mathbf{e} \mathbf{i} \end{bmatrix} \mathbf{i} \begin{bmatrix} \mathbf{i} & \mathbf{e} \mathbf{i} & \mathbf{e} \mathbf{i} \end{bmatrix} \mathbf{i} \begin{bmatrix} \mathbf{i} & \mathbf{e} \mathbf{i} & \mathbf{e} \mathbf{i} \end{bmatrix} \mathbf{i} \begin{bmatrix} \mathbf{i} & \mathbf{e} \mathbf{i} \end{bmatrix} \mathbf{i} \begin{bmatrix} \mathbf{i} & \mathbf{e} \mathbf{i} \end{bmatrix} \mathbf{i} \end{bmatrix} \mathbf{i} \begin{bmatrix} \mathbf{i} & \mathbf{e} \mathbf{i} \end{bmatrix} \mathbf{i} \end{bmatrix} \mathbf{i} \begin{bmatrix} \mathbf{i} & \mathbf{e} \mathbf{i} \end{bmatrix} \mathbf{i} \begin{bmatrix} \mathbf{e} \mathbf{i} \end{bmatrix} \mathbf{i} \end{bmatrix} \mathbf{i} \begin{bmatrix} \mathbf{e} \mathbf{i} \end{bmatrix} \mathbf{i} \end{bmatrix} \mathbf{i} \end{bmatrix} \mathbf{i} \end{bmatrix} \mathbf{i} \begin{bmatrix} \mathbf{e} \mathbf{i} \end{bmatrix} \mathbf{i} \end{bmatrix} \mathbf{i} \end{bmatrix} \mathbf{i} \end{bmatrix} \mathbf{i} \begin{bmatrix} \mathbf{e} \mathbf{i} \end{bmatrix} \mathbf{i} \end{bmatrix} \mathbf{i} \end{bmatrix} \mathbf{i} \end{bmatrix} \mathbf{i} \begin{bmatrix} \mathbf{e} \mathbf{i} \end{bmatrix} \mathbf{i} \end{bmatrix} \mathbf{i} \end{bmatrix} \mathbf{i} \begin{bmatrix} \mathbf{e} \mathbf{i} \end{bmatrix} \mathbf{i} \end{bmatrix} \mathbf{i} \end{bmatrix} \mathbf{i} \end{bmatrix} \mathbf{i} \begin{bmatrix} \mathbf{e} \mathbf{i} \end{bmatrix} \mathbf{i$

 $\mathbf{u} = \left[\mathbf{u}_{1} \right] \left[\mathbf{u}_{1}$ $\mathbf{m} \in \mathbf{5}, \quad \mathbf{i} \in [\mathbf{1}, \mathbf{1}, \mathbf{1},$

in the show when the states of $\begin{bmatrix} \mathbf{a} \\ \mathbf{a} \end{bmatrix} = \begin{bmatrix} \mathbf{a} \\ \mathbf{b} \end{bmatrix} \begin{bmatrix} \mathbf{a} \\ \mathbf{a} \end{bmatrix} = \begin{bmatrix} \mathbf{a} \\ \mathbf{a} \end{bmatrix} \begin{bmatrix} \mathbf{a} \end{bmatrix} \begin{bmatrix} \mathbf{a} \\ \mathbf{a} \end{bmatrix} \begin{bmatrix} \mathbf{a} \\ \mathbf{a} \end{bmatrix} \begin{bmatrix} \mathbf{a} \\ \mathbf{a}$ · / me li.

ւ - С ւ լ 3.1 C

 $\begin{bmatrix} \mathbf{1} \\ \mathbf{2} \\ \mathbf{3} \\ \mathbf{3} \\ \mathbf{4} \\ \mathbf{5} \\ \mathbf{5}$ [1] recently] as enter 1 - 100 as] and in enter] 13. 11] d, il] ~ , is an i] on the second

 $[\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}] = [\mathbf{x}_{1}, \mathbf{x}_{3}] = [\mathbf{x}_{1}, \mathbf{x}_{3}] = [\mathbf{x}_{1}, \mathbf{x}_{3}] = [\mathbf{x}_{2}, \mathbf{x}_{3}]$ $[\mathbf{k}_{1}, \mathbf{k}_{1}] = \mathbf{k}_{1} \mathbf{k}_{2} \mathbf{k}_{2} \mathbf{k}_{1} \mathbf{k}_{2} \mathbf{k}_$ ι"~ ·

(μ] as (μ] /] (]] as - μη (- (/a)] /] (a) - μ_a] (- μ_a) (- , 34 en (-- Unden Jernen ad her te stran Unden ten Jeal en mar 2 str - balen v] Aneah en minh] s] vis by the sur bar [a] i $(\mathbf{r} = \mathbf{r} =$ h, value les manuera

See af it is the interest of the first of the first of the second s b]77b]T 1.

- I] A (], 21 EST (])] 242 AN ER & SAL 2005 LISS]] 221 A
- $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\$
- A Distance of the angle and a contract of the second of the contract of the co An est .
- $\begin{bmatrix} \mathbf{a}_{1} \\ \mathbf{a}_{2} \end{bmatrix} \mathbf{c}_{1} \mathbf{c}_{1} \end{bmatrix} \mathbf{c}_{2} \mathbf{c}_{3} \mathbf{c}_{3} \mathbf{c}_{1} \mathbf{c}_{1} \end{bmatrix} \mathbf{c}_{1} \mathbf{c}_{1} \mathbf{c}_{1} \end{bmatrix} \mathbf{c}_{2} \mathbf{c}_{3} \mathbf{c}_{3$

She balan han She]e en me han en an b]en]e he he han e balan she she han an an balan she han an an an an an an

Figure 1: Averages for the overall test score variable "total," by state/grade and reform status.

 $\begin{bmatrix} \mathbf{x}_{1} \cdot 1 \cdot \cdots \cdot 1 & \mathbf{x}_{1} \cdot \mathbf{x}_{1} \cdot \mathbf{x}_{2} \cdot \mathbf{x}_{$

Figure 2a: Test variable averages for IL grade-3, by reform status.

Figure 2b: Test variable averages for IL-grade 5, by reform status.

Figure 2e: Test variable averages for WA-grade 4, by reform status.

Averages for "problem solving" and "communicating" are not shown because they do not fit within the vertical scal For "problem-solving", the reform students' average is 38.82, and the comparison student's average is 36.31. For "communicating", the averages are 45.03 and 45.06, respectively.

 $\begin{bmatrix} \mathbf{a}_{1} & 2 \end{bmatrix} 2 \quad \mathbf{a}_{1} & \mathbf{b}_{1} & \mathbf{a}_{2} \end{bmatrix} = \begin{bmatrix} \mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{a}_{2} \end{bmatrix} = \begin{bmatrix} \mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{a}_{2} \end{bmatrix} = \begin{bmatrix} \mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{a}_{2} & \mathbf{a}_{2} \end{bmatrix} = \begin{bmatrix} \mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{a}_{2} & \mathbf{a}_{2} \end{bmatrix} = \begin{bmatrix} \mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{a}_{2} & \mathbf{a}_{2} \end{bmatrix} = \begin{bmatrix} \mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{a}_{2} & \mathbf{a}_{2} \end{bmatrix} = \begin{bmatrix} \mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{a}_{2} & \mathbf{a}_{2} \end{bmatrix} = \begin{bmatrix} \mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{a}_{2} & \mathbf{a}_{2} \end{bmatrix} = \begin{bmatrix} \mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{a}_{2} & \mathbf{a}_{2} \end{bmatrix} = \begin{bmatrix} \mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{a}_{2} & \mathbf{a}_{2} \end{bmatrix} = \begin{bmatrix} \mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{a}_{2} & \mathbf{a}_{2} & \mathbf{a}_{2} \end{bmatrix} = \begin{bmatrix} \mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{a}_{2} & \mathbf{a}_{2} & \mathbf{a}_{2} & \mathbf{a}_{2} & \mathbf{a}_{2} \end{bmatrix} = \begin{bmatrix} \mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{a$

3.2 C 1, -R / 1,

 $\begin{aligned} \mathbf{S}_{\mathbf{x}} &= \mathbf{b}_{\mathbf{x}} \mathbf{c}_{\mathbf{x}} + \mathbf{b}_{\mathbf{x}} \mathbf{c}_{\mathbf{x}} +$

 $[\]frac{3}{4\pi \epsilon_{a}} = \frac{1}{2} \left[\frac{1}{2} + \frac{1}{4} \frac{1}{2} + \frac{1}{2} \right] \left[\frac{1}{2} + \frac{1}{4} \frac{1}{4} + \frac{1}{2} \frac{1}{4} + \frac{1}{4} + \frac{1}{4} \frac{1}{4} + \frac{1}$

1 3, illen in alim

- 3 /] [en maine] i ha ar am a b ha b al en tim] i en bel ene h] / /] is] i b a] en n ek n ne n ha] (- i nas] i 3).
- $\frac{1}{10}$, $\frac{$
- i king the [i k] (ka) (ka) (ka) (king the light of li

3.3 C 1, 1,

 $\begin{array}{c} c = 1 \\ c = 1$

Shing in since with the law will be the as the Different the the

- $\begin{bmatrix} -\frac{1}{2} & \frac{1}{2} &$
- $[\mathbf{u}_{i}]_{i}$, $[\mathbf{u}_{i$

- f_{1} f_{1} f_{1} f_{1} f_{2} f_{1} f_{2} f_{2} f_{2} f_{1} f_{2} $f_$

 $\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{$

 $\begin{array}{c} \left(\begin{array}{c} \left(1 \right) \right) \left(1 \right) \left($

Figure 4. Averages for the overall test score variable "total," by state/grade, SES and Title IS status, and reform status.

- $\begin{bmatrix} \mathbf{a}_{1} & \mathbf{4}_{2} & \mathbf{b}_{3} & \mathbf{b}_{4} & \mathbf{3} \end{bmatrix}_{\mathbf{a}_{1}} \quad \mathbf{a}_{2} & \mathbf{b}_{3} & \mathbf{b}_{4} & \mathbf{b}_{4}$
- sulla balen ining en min] ikis] un bij min

- I = T = A = A = [I = 3, 21 = 10, 21

- [[] /] / A . A] / / B . M. () (] [] [] (] (] (] [] .

 $\begin{aligned} & \mathbf{x}_{i} = \mathbf{y}_{i} = \mathbf{y}_{i} + \mathbf{y}_$

• $\frac{1}{2} \frac{1}{2} \frac{$

3.4 C 1, 1,

 $\begin{aligned} \mathbf{S}_{\mathbf{x}} &= \mathbf{10}_{\mathbf{x}_{1}\mathbf{x}_{2}\mathbf{x}$

4. C 1, 1,

 $\begin{aligned} & \begin{array}{c} \mathbf{S}_{\mathbf{A}} \left[\left[\mathbf{B}_{\mathbf{A}} \right] \left[\mathbf{A}_{\mathbf{A}} \right] \left[\mathbf{A}_{\mathbf{A}} \right] \left[\mathbf{A}_{\mathbf{A}} \right] \left[\mathbf{B}_{\mathbf{A}} \left[\mathbf{B}_{\mathbf{A}} \right] \left[\mathbf{B}_{\mathbf{A}} \left[\mathbf{B}_{\mathbf{A}} \right] \left[\mathbf{B}_{\mathbf{A}} \right] \left[\mathbf{B}_{\mathbf{A}} \right] \left[\mathbf{B}_{\mathbf$

http://www.cse.ucla.edu/CRESST/Reports/TECH528.pdf $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 &$ **,**]_t[**)**. 22 (1), 3 2 . $[\overset{\mu}{}_{hh}, \overset{\mu}{}_{h}], \overset{\mu}{}_{h}, \overset{\mu}{}, \overset{\mu}{}_{h}, \overset{\mu}{}_{h}, \overset{\mu}{}_{h}, \overset{\mu}{}, \overset{\mu}{},$ $\begin{bmatrix} i & j_{1} \cdot (1 &) \\ \vdots & \vdots & j_{n} \cdot (1 &) \end{bmatrix} \begin{bmatrix} i & j_{1} & i & j_{2} & j$ E = t = , 21, 1 = 0 = 206. $\begin{bmatrix} \mathbf{1} & \mathbf{1} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} \end{bmatrix} = \begin{bmatrix} \mathbf{1} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} \end{bmatrix} \begin{bmatrix} \mathbf{1} & \mathbf{1} \\ \mathbf{1} \end{bmatrix} \begin{bmatrix} \mathbf{1} & \mathbf{1} \end{bmatrix} \begin{bmatrix} \mathbf{1} & \mathbf{1} \\ \mathbf{1} \end{bmatrix} \begin{bmatrix} \mathbf{1} & \mathbf{1} \end{bmatrix} \begin{bmatrix} \mathbf{1} & \mathbf{1} \\ \mathbf{1} \end{bmatrix} \begin{bmatrix} \mathbf{1} & \mathbf{1} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{1} & \mathbf{1} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{1} & \mathbf{1} \end{bmatrix} \begin{bmatrix} \mathbf{1} & \mathbf{1} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{1} & \mathbf{1$ (3), 2 2 5. , (1) , (1M t, t E, t, 30(1), 31. $\begin{array}{c} \mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{k}_{1}, \mathbf{k}_{2}, \mathbf{k}_{1}, \mathbf{k}_{2}, \mathbf{k}_{2}, \mathbf{k}_{1}, \mathbf{k}_{2}, \mathbf{k}_{2}$ $\begin{array}{c} \mathbf{u}_{\mathbf{n}}, \mathbf{y}, \mathbf{\&} \quad \mathbf{h}_{\mathbf{n}}, \mathbf{P} \left(\begin{array}{c} 1 \\ 0 \end{array} \right), \mathbf{p} \quad \mathbf{h}_{\mathbf{n}}, \mathbf{p} \quad \mathbf{h}_{\mathbf{n}}, \mathbf{p} \quad \mathbf{h}_{\mathbf{n}}, \mathbf{h}_{\mathbf{n}} \end{array} \right) \quad \mathbf{u}_{\mathbf{n}} \mathbf{h}_{\mathbf{n}} \left(\begin{array}{c} \mathbf{u}_{\mathbf{n}}, \mathbf{p} \\ \mathbf{u}_{\mathbf{n}} \end{array} \right) \quad \mathbf{u}_{\mathbf{n}}, \mathbf{h}_{\mathbf{n}} \left(\begin{array}{c} \mathbf{u}_{\mathbf{n}}, \mathbf{p} \\ \mathbf{u}_{\mathbf{n}} \end{array} \right) \quad \mathbf{u}_{\mathbf{n}} \left(\begin{array}{c} \mathbf{u}_{\mathbf{n}}, \mathbf{p} \\ \mathbf{u}_{\mathbf{n}} \end{array} \right) \quad \mathbf{u}_{\mathbf{n}} \left(\begin{array}{c} \mathbf{u}_{\mathbf{n}}, \mathbf{p} \\ \mathbf{u}_{\mathbf{n}} \end{array} \right) \quad \mathbf{u}_{\mathbf{n}} \left(\begin{array}{c} \mathbf{u}_{\mathbf{n}}, \mathbf{p} \\ \mathbf{u}_{\mathbf{n}} \end{array} \right) \quad \mathbf{u}_{\mathbf{n}} \left(\begin{array}{c} \mathbf{u}_{\mathbf{n}}, \mathbf{p} \\ \mathbf{u}_{\mathbf{n}} \end{array} \right) \quad \mathbf{u}_{\mathbf{n}} \left(\begin{array}{c} \mathbf{u}_{\mathbf{n}}, \mathbf{p} \\ \mathbf{u}_{\mathbf{n}} \end{array} \right) \quad \mathbf{u}_{\mathbf{n}} \left(\begin{array}{c} \mathbf{u}_{\mathbf{n}}, \mathbf{p} \\ \mathbf{u}_{\mathbf{n}} \end{array} \right) \quad \mathbf{u}_{\mathbf{n}} \left(\begin{array}{c} \mathbf{u}_{\mathbf{n}}, \mathbf{p} \\ \mathbf{u}_{\mathbf{n}} \end{array} \right) \quad \mathbf{u}_{\mathbf{n}} \left(\begin{array}{c} \mathbf{u}_{\mathbf{n}}, \mathbf{p} \\ \mathbf{u}_{\mathbf{n}} \end{array} \right) \quad \mathbf{u}_{\mathbf{n}} \left(\begin{array}{c} \mathbf{u}_{\mathbf{n}}, \mathbf{p} \\ \mathbf{u}_{\mathbf{n}} \end{array} \right) \quad \mathbf{u}_{\mathbf{n}} \left(\begin{array}{c} \mathbf{u}_{\mathbf{n}}, \mathbf{p} \\ \mathbf{u}_{\mathbf{n}} \end{array} \right) \quad \mathbf{u}_{\mathbf{n}} \left(\begin{array}{c} \mathbf{u}_{\mathbf{n}}, \mathbf{p} \\ \mathbf{u}_{\mathbf{n}} \end{array} \right) \quad \mathbf{u}_{\mathbf{n}} \left(\begin{array}{c} \mathbf{u}_{\mathbf{n}}, \mathbf{p} \\ \mathbf{u}_{\mathbf{n}} \end{array} \right) \quad \mathbf{u}_{\mathbf{n}} \left(\begin{array}{c} \mathbf{u}_{\mathbf{n}}, \mathbf{p} \\ \mathbf{u}_{\mathbf{n}} \end{array} \right) \quad \mathbf{u}_{\mathbf{n}} \left(\begin{array}{c} \mathbf{u}_{\mathbf{n}}, \mathbf{p} \\ \mathbf{u}_{\mathbf{n}} \end{array} \right) \quad \mathbf{u}_{\mathbf{n}} \left(\begin{array}{c} \mathbf{u}_{\mathbf{n}}, \mathbf{u}_{\mathbf{n}} \end{array} \right) \quad \mathbf{u}_{\mathbf{n}} \left(\begin{array}{c} \mathbf{u}_{\mathbf{n}} \end{array} \right) \quad \mathbf{u}_{\mathbf{n}} \left(\begin{array}{c} \mathbf{u}_{\mathbf{n}}, \mathbf{u}_{\mathbf{n}} \end{array} \right) \quad \mathbf{u}_{\mathbf{n}} \left(\begin{array}{c} \mathbf{u}_{\mathbf{n}} \end{array} \right) \quad \mathbf{u}_{\mathbf{n}} \end{array} \right) \quad \mathbf{u}_{\mathbf{n}} \left(\begin{array}{c} \mathbf{u}_{\mathbf{n}} \end{array} \right) \quad \mathbf{u}_{\mathbf{n}} \left(\begin{array}{c} \mathbf{u}_{\mathbf{n}} \end{array} \right) \quad \mathbf{u}_{\mathbf{n}} \left(\begin{array}{c} \mathbf{u}$ $\frac{1}{2} \cdot (2003) \quad i]_{n \ A \ A} \quad i]_{n \ n \ t} \left[\begin{array}{c} \mathbf{1} \\ \mathbf{1} \\ \mathbf{2} \\ \mathbf{1} \end{array} \right] \cdot \mathbf{1} \\ \mathbf{1} \\ \mathbf{1} \\ \mathbf{2} \\ \mathbf{1} \end{array} \left[\begin{array}{c} \mathbf{1} \\ \mathbf{1} \\ \mathbf{1} \end{array} \right] \cdot \mathbf{1} \\ \mathbf{1} \\ \mathbf{1} \\ \mathbf{1} \\ \mathbf{1} \end{array} \left[\begin{array}{c} \mathbf{1} \\ \mathbf{1} \\ \mathbf{1} \\ \mathbf{1} \end{array} \right] \cdot \mathbf{1} \\ \mathbf{1} \\ \mathbf{1} \\ \mathbf{1} \\ \mathbf{1} \end{array} \left[\begin{array}{c} \mathbf{1} \\ \mathbf{1} \\ \mathbf{1} \\ \mathbf{1} \end{array} \right] \cdot \mathbf{1} \\ \mathbf{1} \\ \mathbf{1} \\ \mathbf{1} \\ \mathbf{1} \end{array} \left[\begin{array}{c} \mathbf{1} \\ \mathbf{1} \\ \mathbf{1} \\ \mathbf{1} \\ \mathbf{1} \end{array} \right] \cdot \mathbf{1} \\ \mathbf{1} \\ \mathbf{1} \\ \mathbf{1} \\ \mathbf{1} \\ \mathbf{1} \end{array} \right] \cdot \mathbf{1} \\ \mathbf{1$ $\begin{array}{c} \mathbf{P}_{\mathbf{n}} \in \mathcal{F}^{\mathsf{H}} : \mathbf{A} := \{\mathbf{P}_{\mathbf{n}} : \mathbf{P}_{\mathbf{n}} :$

 $\frac{1}{2} \frac{1}{2} \frac{1$

 $\mathbf{Y}_{\mathbf{b}} = \begin{bmatrix} \mathbf{x} & \mathbf{y} \\ \mathbf{y} & \mathbf{y} \end{bmatrix} \mathbf{x} = \begin{bmatrix} \mathbf{y} & \mathbf{y} \\ \mathbf{y} \end{bmatrix} \mathbf{x} = \begin{bmatrix} \mathbf{y} & \mathbf{y} \\ \mathbf{y} \end{bmatrix} \mathbf{x} = \begin{bmatrix} \mathbf{y} & \mathbf{y} \\ \mathbf{y} \end{bmatrix} \mathbf{x} = \begin{bmatrix} \mathbf{y} & \mathbf{y} \\ \mathbf{y} \end{bmatrix} \mathbf{x} = \begin{bmatrix} \mathbf{y} & \mathbf{y} \\ \mathbf{y} \end{bmatrix} \mathbf{x} = \begin{bmatrix} \mathbf{y} & \mathbf{y} \\ \mathbf{y} \end{bmatrix} \mathbf{x} = \begin{bmatrix} \mathbf{y} & \mathbf{y} \\ \mathbf{y} \end{bmatrix} \mathbf{x} = \begin{bmatrix} \mathbf{y} \\ \mathbf{y} \end{bmatrix} \mathbf{x} \end{bmatrix} \mathbf{x} = \begin{bmatrix} \mathbf{y} \\ \mathbf{y} \end{bmatrix} \mathbf{x} \end{bmatrix} \mathbf{x} = \begin{bmatrix} \mathbf{y} \\ \mathbf{y} \end{bmatrix} \mathbf{x} \end{bmatrix} \mathbf{x} = \begin{bmatrix} \mathbf{y} \\ \mathbf{y} \end{bmatrix} \mathbf{x} \end{bmatrix} \mathbf{x} = \begin{bmatrix} \mathbf{y} \\ \mathbf{y} \end{bmatrix} \mathbf{x} \end{bmatrix} \mathbf{x} = \begin{bmatrix} \mathbf{y} \\ \mathbf{y} \end{bmatrix} \mathbf{x} \end{bmatrix} \mathbf{x} = \begin{bmatrix} \mathbf{y} \\ \mathbf{y} \end{bmatrix} \mathbf{x} \end{bmatrix} \mathbf{x} \end{bmatrix} \mathbf{x} = \begin{bmatrix} \mathbf{y} \\ \mathbf{y} \end{bmatrix} \mathbf{x} \end{bmatrix} \mathbf{x} \end{bmatrix} \mathbf{x} = \begin{bmatrix} \mathbf{y} \\ \mathbf{y} \end{bmatrix} \mathbf{x} \end{bmatrix} \mathbf{x} \end{bmatrix} \mathbf{x} = \begin{bmatrix} \mathbf{y} \\ \mathbf{y} \end{bmatrix} \mathbf{x} \end{bmatrix} \mathbf{x} \end{bmatrix} \mathbf{x} \end{bmatrix} \mathbf{x} = \begin{bmatrix} \mathbf{y} \\ \mathbf{y} \end{bmatrix} \mathbf{x} \end{bmatrix} \mathbf{x} \end{bmatrix} \mathbf{x} \end{bmatrix} \mathbf{x} = \begin{bmatrix} \mathbf{y} \\ \mathbf{y} \end{bmatrix} \mathbf{x} \end{bmatrix}$

 t, t, \ldots, t'

 t, t, \ldots, t'

 $\begin{bmatrix} 1 & ...$

• bergen in, ... & i bilange (2001). gb g as rad • - r g g and fre ibin a rad • - r g g and fre ibin a rad • - r g g and fre ibin a

 $\mathbf{y} \cdot \mathbf{x} = \mathbf{y} \cdot \mathbf{y} \cdot \mathbf{y} \cdot \mathbf{y} + \mathbf{y} + \mathbf{y} \cdot \mathbf{y} + \mathbf{y} +$

Appendi A

A.1 The Matching Procedure

- E : S ... r rr. r, T. IM. ... r , ... E ... r .

 P.
 r
 r
 r
 r
 r
 m, r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r</t

 $\mathbf{M}_{1} = \mathbf{M}_{1} + \mathbf{M}_{2} + \mathbf{M}_{1} + \mathbf{M}_{2} + \mathbf{M}_{2} + \mathbf{M}_{1} + \mathbf{M}_{2} + \mathbf{M}_{2} + \mathbf{M}_{1} + \mathbf{M}_{2} + \mathbf{M}_{2}$

A.2 E clusions and Missing Data Procedures

 $T_{\rm exp} (5) , r_{\rm exp} (-r_{\rm exp} - r_{\rm exp} -$

- Clim A strict respective reasons reasons

A, r , 3% i, r r, i, \mathbf{x} , i, rr, / , , r r \mathbf{x} , \mathbf{x}

- $\mathbf{F} \mathbf{r} \mathbf{I}_{\mathbf{n}} = (\mathbf{r} \times \mathbf{3}, \mathbf{z} \mathbf{5}), \quad \mathbf{r} \times \mathbf{$
- $\mathbf{F} \mathbf{r} \mathbf{E}_{\mathbf{A}}$ (\mathbf{r} , $\mathbf{3}$, $\mathbf{4}$), $\mathbf{r}_{\mathbf{a}}$, $\mathbf{r}_{\mathbf{a}}$

A.3 Construction of Case Weights for Comparison Students

• = (# Rr r) / (# Mr r) / (# Lr) .

A.4 Corrective Adjustment for Matching Differences

Τιμι Μ., ΓιΓι, Γ., Ε.

- 4. L O. () r_{1} r_{2} r_{2} r_{2} r_{3} r_{4} r_{2} r_{4} r_{4} r

A.5 Calculation of Effect Sizes and Their Standard Errors

 $\mathbf{r} \quad \mathbf{r} \quad$

 $r(r_{\rm R}, r_{\rm R}, r_{\rm C}) = r(r_{\rm R}, r_{\rm R}) + r(r_{\rm C}, r_{\rm C})$

 $= (1) \sigma_{R}^{2} r_{R}^{2} + \sigma_{C}^{2} r_{C}^{2}$

 $= 0.90 \ 0.94 \ 0.96 = 0.81$

F $\mathbf{r}_{,\ldots}$, $\mathbf{r}_{,\ldots}$, $\mathbf{\sigma}_{R}^{2} \approx \mathbf{\sigma}_{C}^{2}$, $\mathbf{r}_{R} \approx \mathbf{c}(\mathbf{r}_{,\ldots})$,

 $r(r_{\rm R}, r_{\rm C}) \approx 1.19 \sigma_{\rm C}^2 / r_{\rm R}$

 $F \mathbf{r} = (\mathbf{r} - \mathbf{r} - \mathbf{r} - \mathbf{m}, \mathbf{r}$

 A.
 r.
 <td

A.6 Validit of Results

Reliabilit of measures and regression artifacts

- T ..., r, ..., r, ..., r, ..., r, ..., r, ..., ..., ..., ..., P ...,
- Frr, r, r, r, (0.99 rr, r, r, 0.98 r r , r,),

An alternative anal sis

Appendix B

The ARC Center study includes data from five state-mandated tests administered in the spring of 2000. Table 15 compares the five tests based on the number and type of questions, time limits, and use of calculators and other tools.

Table 15: State Tests Comparison

		МА	IL	IL	WA	WA
		grade 4	grade 3	grade 5	grade 3	grade 4
Nor	no of Tost	-	-	-	-	-

Name of Test

Information and sample items are available at www.isbe.state.il.us/assessment/isat.htm.

The W A S L (WASL) is designed to measure the mathematics proficiency of students according to the state E A L R (EALR). Administration of the test in grade 4 was voluntary in 1997 and required since 1998. A total math score is reported along with scores in the following content and process strands:

- Number Sense
- Measurement Concepts
- Geometric Sense
- Probability and Statistics
- Algebraic Sense
- Solving Problems
- Reasoning Logically
- Communicating Understanding
- Making Connections

Information and sample items are available at www.k12.wa.us

The I w T B S (ITBS) is a norm-referenced test. Since 1999, grade 3 students in Washington State have taken the ITBS (Form M). National norms for the test were established in 1995. The mathematics portion of the test consists of three sections:

- Math Concepts and Estimation The Math Concepts portion includes number properties and operations, algebra, geometry, measurement, and probability and statistics. The Estimation portion measures students' mental arithmetic and estimation skills.
- Math Problem Solving and Data Interpretation The Problem Solving and Data Interpretation test includes word problems and interpretation of tables and graphs.
- Math Computation Each problem in the Math Computation test requires the use of one arithmetic operation—addition, subtraction, multiplication, or division.

Information on the ITBS is available at www.riverpub.com/products/group/itbs and www.uiowa.edu/~itp/itbs.htm.

The M C A S (MCAS) was first administered in 1998. Early versions, including the spring 2000 version, were based on the 1996 M M C F w. The following mathematics content strands were tested:

- Number Sense
- Patterns, Relation, and Functions
- Geometry and Measurement
- Statistics and Probability

The test items from the spring 2000 administration of the MCAS are available at http://www.doe.mass.edu/mcas/2000/release/.

Sample Items

The format of the items on the tests varies widely. As shown in Table 15, all of the tests include multiple-choice items. Figure a shows two sample items from the grade3 ISAT in the Estimation/Number Sense/Computation standard set. Figure b shows a released multiple-choice item from the grade 4 MCAS from the Number Sense

reporting category and Fractions and Decimals substrand. Note that students are encouraged to use their toolkit to help solve the problem.

Figure a. Sample multiple-choice items from the grade 3 ISAT

Figure b. Released multiple-choice item from the grade 4 MCAS

The state tests in Washington and Massachusetts included short-answer questions. Figure c shows two short-answer questions from the grade 4 MCAS. One is from the Number Sense reporting category and the Number Computation substrand and the other is from the Geometry and Measurement reporting category and the Measurement substrand.

Figure c. Two short-answer questions from the grade 4 MCAS

In 2000, Washington and Massachusetts included results from open-response items in student scores. Figure d is a sample open-response item from the grade 4 WASL. Figure e is the corresponding scoring rubric.

Lo	ok at i	the fo	llowin	g list	of nu	mber	S.				
9	18	27	36	45	54	63	72	81	90		
De	scribe	e two) diffe	rent	patte	rns yo	ou see	e in th	ese n	umbe	ers.
1.			5.11.00								-
_											
2											

Figure d. Sample open-response item from the grade 4 WASL

2	A 2-point response describes two different number patterns in the given list of numbers. Possible patterns include the following (or			
	equivalent statements):			
	 All the numbers are multiples of 3. 			
	 All the numbers are multiples of 9. 			
	 The digit(s) in each number add up to 9. 			
	 The ones digit decreases by 1 in each number. 			
	 The tens digit increases by 1 in each number 			
	 You add 9 to get the next number. 			
	 Every other number is odd, or every other number is even. 			
1	A 1-point response does one of the following:			
	 Describes one number pattern in the list of numbers. 			
	 Describes two different number patterns, but the descriptions 			
	may be vague, incomplete, or unclear (e.g., "the numbers are detting bigger")			
0	A 0-point response shows little or no understanding of algebraic			
-	sense.			

Figure e. Scoring rubric for open-response item from the grade 4 WASL

Appendix C

This Implementation Survey was administered in print and by follow-up phone interview to each school in the study using one of the reform curricula.

То:	From:	
	Phone:	
	Fax:	
Phone:	e-mail	
Fax:	Date:	
	Pages:	

The <u>(name of project)</u> at the <u>(name of institution)</u>, with funding from the National Science Foundation and in collaboration with TERC, COMAP, The University of Chicago, and the University of Illinois at Chicago, is carrying out a study of student achievement with <u>(name of curriculum)</u> and two other reform-oriented curricula. As part of our study, we are surveying schools using these curricula.

The survey includes eight questions. We need this information about each school using <u>(name of curriculum)</u>. Please look over the questions and answer them as accurately as possible. Thank you.

School: _____

Phone number and best time to call:

Name and position of person completing survey:

1. What was the primary mathematics program (the instructional materials) used by this school in each grade for mathematics during the 1999–2000 school year?

Grade	Primary Mathematics Program
2	
3	
4	
5	

2. What percentage of teachers for this school used <u>(name of curriculum)</u> or at least 75% of their math instruction during the 1999–2000 school year?

Grade	% of teachers
	fully using
2	
3	
4	
5	

As of June 2000, for this school at each grade, how many years had <u>(name of curriculum)</u> been fully implemented? (Use 'At least 75% of teachers using the curriculum for at least 75% of their mathematics instruction' as the definition of 'full implementation.')

Grade	Years at full?
2	
3	
4	
5	

4. As of June 2000, at each grade level, what was the total number of hours on average of staff development related to <u>(name of</u> <u>curriculum)</u> for a typical teacher using it (since 1994)?

Grade	# of hours of staff development (circle a range)				
2	0–6	7–30	31–99	100+	
3	0–6	7–30	31–99	100+	
4	0–6	7–30	31–99	100+	
5	0–6	7–30	31–99	100+	

5. How many actual minutes of mathematics instruction were there per day during the 1999–2000 school year?

Grade	Minutes per day
2	
3	
4	
5	

6. On average, for what percent of math time did teachers use <u>(name of curriculum)</u> during the 1999–2000 school year?

Grade	% of time
2	
3	
4	
5	

7. On average, during the 1999–2000 school year how many units (or lessons, or modules, as appropriate) did teachers complete?

Grade	# units
2	
3	
4	
5	

8. What supplementary mathematics materials (test prep, math facts practice, problem solving, etc.) were used during the 1999–2000 school year?

Grade	What supplementary materials were used?
2	
3	
4	
5	

		G ade			
Sae	7	3	4	5	Та
Illinois	289	290*	275	254*	1,108
Massachusetts	93	159	158*	81	491
Washington	177	178*	178*	125	658
T a	559	627	611	460	2,257

Table 1: Number of school/grade case records coded for the implementation survey, by state and grade level

* Student achievement data is available for these five state/grade combinations, which include a

total of 1,058 school/grade case records.

Table 2: Number of eligible reform school/grade cases, by state, grade level, and reform program

a

٩

Ref

	÷			
	Ere da	-		ŀ
Sae-Gade Levre	Маеас	Lre a .	Ма Гарае	Га
Illinois-Grade 3	203	0	13	216
Illinois-Grade 5	168	0	Q	174
Massachusetts-Grade 4	64	63	0	127
Washington-Grade 3	64	15	34	113
Washington-Grade 4	63	15	34	112
Ta	562	63	87	742

State	Grade	A Total schools	B Exclusions*	C Total schools available for	D Number of reform schools to be	E Motobing ratio
State	level	at grade level	EXClusions	matching	matcheu	watching ratio
I	3	2,308	187	1,905	216	8.8 : 1
	5	2,184	191	1,819	174	10.5 : 1
h	4	1,051	173	751	127	5.9 : 1
h	3	1,150	248	789	113	7.0 : 1
	4	1,149	254	783	112	7.0 : 1
		7,842	1,053	6,047	742	

3: Ex h_r, y_r.

* l r x , h / r h r r y , h r h r y h / r h r r 737 r x h / r h r r y , r r 9.4% fh h / r A

h A h fh 🚑,,. h h r E h r fh .

> 4: hr rfr rfrh/r hr rh/r*.

State	e-Grade L	.evel			Matching Varia	ble	
					Average p	ercentage of:	
I -	r 3		r r	h	-	У	EP
		fr	165.75	74%	18%	13%	6%
		r	165.85	77%	18%	13%	5%
I -	r 5	-	r r	h	-	У	EP
		fr	164.46	76%	17%	11%	5%
		r	164.2	81%	18%	12%	4%
					fr /r		
h	-	r 4	r r	h	h	у **	EP**
		fr	236.99	77%	12%	16%	2%
		r	236.28	80%	14%	11%	1%
h	- r	3	r r	h	l h		
		fr	192.07	80%	2%	16%	
		r	191.97	82%	2%	16%	
h	- r	4	r r	h	l h	1	
		fr	412.46	80%	3%	6%	
		r	412.36	82%	3%	6%	
*Ar	f r	r	h h	r h	r . (A	x A, 3.)	
** ♥ r	r k		h.				

*ш	records in final file used for tabulations and constructing case weights	28,992 14,875 reform 14,117 comparison	27,481 13,820 reform 13,661 comparison	14,397 6,879 reform 7,518 comparison	14,669 7,813 reform 6,856 comparison	15,336 7,953 reform 7,383 comparison	100,875 51,340 reform 49,535 comparison
0	g data race/ ethnicitv	1,249	1,195	94	458	274	3,270
	missin reading score	498	74	84	125	71	852
υ	records after excluding students with incomplete math test data	29,490	27,555	14,575	14,794	15,407	101,821
В	records after excluding math- disabled/IEP/special education students	30,052	27,763	15,010	15,333	15,737	103,895
٩	reform and comparison school records on state file prior to exclusions	32,923 8.7% are IEP	30,807 9.9% are IEP	17,822 15.8% are math-disabled	16,868 9.1% are spec-edn/IEP	17,702 11.1% are spec-edn	116,122
	Grade Level	3rd	5th	4th	3rd	4th	
	State	Illinois		Massachusetts	Washington		Total

* Excepting Massachusetts, the total count in Column E is equal to the count in Column C minus the count for reading score in Column D. For Massachusetts, the total count in Column E is equal to the count in Column C minus the sum of the counts in Column D.

		_		R, P., I		
	G		E		Μ	
S	LL	S IS .	M	ا بهر به	Τ. Ι.Ι	TL
Illinois	3rd	Reform	13,840	0	1,035	14,875
		Comparison	13,216	0	901	14,117
	5th	Reform	12,988	0	832	13,820
		Comparison	13,098	0	563	13,661
Massachusetts	4th	Reform	3 962	2 917	0	6 879
Massachasetts		Comparison	4,181	3,337	0	7,518
Washington	3rd	Reform	4.412	916	2.485	7.813
3 1		Comparison	3,923	783	2,150	6,856
	4th	Reform	4,499	920	2,534	7,953
		Comparison	4,063	907	2,413	7,383
 T 14		Reform	39 701	4 753	6 886	51 340
• • •		Comparison	38,481	5,027	6,027	49,535
			78,182	9,780	12,913	100,875

 Table 6: Number of student records used for tabulated comparisons, by state, grade level, school status, and curriculum.

									making connections	3.55***	0.116		
			multiple choice	0.89*** 0.053					commun- icating	-0.03	-0.001		
			short answer	-0.62 -0.024	/stants/	estimation	1.86***	0.108	logic	1.17***	0.040		
			open response	2.46*** 0.119	nrohlem	solving	0.76**	0.036		2.51 ***	060.0		
algebra	1.44*** 0.073	1.44*** 0.067		3.07*** 0.137						2.99***	0.112	0.088***	+3.52%
prob/stat	0.06 0.003	1.55*** 0.079		-0.16 -0.008						0.00	0.000	0.025***	+1.00%
geometr	0.76*** 0.038	3.26*** 0.165		-0.19 -0.010						1.61***	0.078	0.078***	+3.12%
measurement	3.84*** 0.164	3.02*** 0.132								3.43***	0.120	0.142***	+5.68%
computation	2.78*** 0.141	2.29*** 0.117		2.36*** 0.127			0.74**	0.039		1.02***	0.041	0.102***	+4.08%
total	1.82*** 0.099	2.20*** 0.116		1.33*** 0.078			1.27***	0.078		1.77***	0.093	0.097***	+3.88%
math	1.39*** 0.098	1.82*** 0.121		1.34*** 0.087			1.34***	0.073		3.02***	0.093	0.098***	+3.92%
	difference effect si e	difference effect si e		difference effect si e			difference	effect si e		difference	effect si e	effect si e	percentile change
	IL grade3 (n=14,875)	IL grade5 (n=13,820)		MA grade 4 (n=6,879)			VA grade3	(n=7,813)		WA grade4	(n=7,953)	Combined	(n=51,340)

Table 7: Average differences and effect si es, b state/grade combination.

"Math" is scaled test score; "total" and remaining strand scores are percent of total possible points on entire test or appropriate strand portion of test.

The record counts in column one are the numbers of reform-student records used for tabulations. For an given tabulation, the weighted number of comparison-student records used is equal to the number of reform-student records used.

Two-sided significance levels are defined as follows: *** is p < 0.001, ** is p < 0.01, * is p < 0.025.

0.088*** +3.52% 0.086*** 0.087*** 0.035 +1.40% 0.091*** +3.44% +3.48% +3.64% algebra 0.029 +1.16% 0.020*** 0.025*** -0.005 -0.20% +1.00% 0.043 +1.72% +0.80% prob/s a 0.078*** 0.081*** 0.070*** 0.162*** +6.48% +3.24% 0.049* +1.96% +2.80% +3.12% geome r meae remen 0.175*** 0.129*** 0.094*** 0.144 *** 0.142*** +7.00% +5.16% +3.76% +5.76% +5.68% comp a ion 0.102*** 0.097*** 0.109*** 0.017 +0.68% 0.106*** +3.88% +4.36% +4.24% +4.08% 0.031 +1.24% 0.100*** +4.00% 0.097*** 0.115*** 0.101*** +4.60% +4.04% +3.88% o al 0.092*** +3.68% 0.021 +0.84% 0.098*** 0.106*** 0.100*** +4.00% +3.92% +4.24% ma h (n=3,071) percen ile change percen ile change percen ile change (n=37,609) percen ile change (n=51,340) percen ile change effec 🦛 e effec 🗻 e effec 🦛 e effec 🗻 e effec 🤹 e Combined (n=3,002)Hispanic (n=3,509) Aeian Whi e Black

8 "Mah" is acaled es acore; " o al" and remaining a rand acores are percen of o al possible point on en ire es or appropria e and por ion of

comparizon~ den

recorde ced is roghled alohen mber of reform-ceden recorde ced.

★ b≮eq en limp ed.

The ab la ione for geomer , prob/e a and algebra are baeed on 5-10% fe er e den recorde, beca ee heee e rande are no eepara el ecored in he WA he WA (grade 3) es (grade 3) ee.

** is p < 0.01, * is p < 0.025 T o-cided cignificance le ele are defined ac follo c:

Table 8: A erage effec ei e and percen ile change, b e den race/e hnici

, --

4

er:

ļ

י א

•

-

~

٣

.

0.0 1*** 0.0 2*** 0.0 1*** 0.11 *** * * * % # % 4% +3.24% +3.24% +3.52% +3.4 + 4 0.0 0.0 , +2 -0.02 # -1.04% *** 0.025*** 0.02 * +1.0 % % +0.1 % +0.12% +1.00% 0.004 0.003 · · / · · 0.03 +1.5 ÷ . ۲ ₽ T 0.04 *** * * * 0.152*** 0.0 2*** 0.000 +0.00% 0.032 # +3.2 % + .0 % +1.4% +1.2 % +3.12% • 0.0 1 ۲ 14 14 1 • 0.150*** + .00% 0.144*** 0.142*** 0.0 5 # +2. 0% 0.125*** 0.110*** % % +4.40% +5.00% +5. +5. 4, ٢ • 0.102*** 0.103*** 0.124*** 0.151*** 0.03 *** % +4.12% +4. % + .04% % +1.4% 0.04 +4.0 +1.5 Ť ۲ r F L 0.0 4*** +3. % 0.0 0.102*** 0.10 *** 0.0 5*** *** +4.0 % +4.32% +3.12% +3.40% % ٢ i 0.0 Ľ . θ+ ł 0.114*** ۲ ¦ * * * 0.101*** * * * 0.0 3*** * * * +3.0 % +4.04% 4% +3.32% 2% +4.5 % 0.0 0.0 +3. 0.0 . ო + . ļ ļ ī ļ ļ Ţ ۲ Y Y \mathbf{F} \mathbf{F} \mathbf{F} ≥ • • • • • • • ---• • • h h f (⊲ 1 ,3 5) ŝ (< 51,340) ر بر 4 , 23) ŝ r = ۲ اللا ا ا (⊲ 13, (⊲ <mark>1</mark>, ₌¦ V V ۲ . ; h 1 4 . ļ **A**, £ ۲ ۲ ۴ <u>-</u> , ۲

; ۲ ۲ 4 . • ¥ **₹ .** . . | | . . ۲ . ¥ 4 ۲ 4, ۲ 4, **4** ' ۲ ۲ • ۲ 4 4 ۲ . ۲ ۲ • 4 , 1 4 1 I - - 4 1 é <u>r</u> ۲ 4, ۲

ıi. ۴ ŗ ; , <u>,</u> 4, ۴ ; 4 20% • 4, ۴ ¥ 4, • **,** 11 ţ ۴

۲ ۲ : Y • **4 4** Ļ ۲ ⊷ ¦ ۲ ł 4 ¢ ; ţ ۲ ··-/ ×·· • **1**4 ۲ 4 ~ ~⊲ 50 4, ł ۲ ł Ť 4 . **'** 4-4- -# ۲

Į <u>با</u> ا ۲ ۲ • **4** ۲ 44, . ł e ۴ ۲ ۲ 50 Ť

4

4,

•

.

ţ

.

•

0.025 、 ~ 0.01, ** 0.001, ۲ ۲ £ _ ţ 44 --4 <u>ר</u> י ז

		¥-		- ¥- F - I - ¥-	· · · · · · · · · · · · · · · · · · ·	1- • • •	- 47	1 - • • 1
, (25, 2)	at : <u>1</u>	0.0 9 * ** +3. %	0.0 9 * ** +3. %	0.105*** +4.20%	0.144*** +5. ♥ %	0.0 1*** +3.24%	0.023*** +0. 9 2%	0.0 9 *** +3.5 %
M (24,933)	at - <u>1</u>	0.0 9 *** +3.4%	0.0 9 4*** +3. ₹ %	0.0 9 *** +3. 9 2%	0.140*** +5.0%	0.0 1 4 *** +2. 9 %	0.024*** +0. 9 %	0.0 4*** +3.3 %
5 1,340)	••···•	0.0 9 *** +3. 3 2%	0.0 9 * ** +3. %	0.102*** +4.0 %	0.142*** +5. %	0.0 ♥ *** +3.12%	0.025*** +1.00%	0.0 *** +3.52%

. . .

0.025 المواقعة المرامية الموادية في المرابعة المرامية المرامي

	· · · · · · · · · · · · · · · · · · ·
	° *
4	
	e
	(4), The (4),
Student Records 1 1 1 1 1 1 0 2 1 2 0 1	● ► ► ● ► ► ● ► ► ► ● ►
Reform Status Control	
State- Grade Level	, ~_

Assumed covariate

Assumed covariate

		reliabilities: read=0.99, lowincom=0.98, white=0.98	reliabilities: read=0.97, lowincom=0.92, white=0.92
Test variable modeled	Covariates used	Estimated bias	Estimated bias
math	reading score	+4.2%	+8.2%
math	low-income %	+1.2%	+21.9%
math	reading score low-income %	+4.1%	+5.6%
math*	reading score low-income % white %	+6.2%	+3.0%
computation	reading score low-income %	+2.1%	+3.8%
algebra	reading score low-income %	+6.3%	+13.4%
algebra	reading score low-income % white %	-3.2%	+15.4%

* Math was also modeled using these same covariates, but with unrealistically low assumed reliabilities: read=0.90, lowincom=0.90, and white=0.90. The estimated bias was +38.3%.

math total computation measurement geometry