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This study evaluated the efficacy of a preschool mathematics program based on a
comprehensive model of developing research-based software and print curricula.
Building Blocks, funded by the National Science Foundation, is a curriculum devel-
opment project focused on creating research-based, technology-enhanced mathe-
matics materials for pre-K through grade 2. In this article, we describe the underlying
principles, development, and initial summative evaluation of the first set of resulting
materials as they were used in classrooms with children at risk for later school failure.
Experimental and comparison classrooms included two principal types of public
preschool programs serving low-income families: state funded and Head Start
prekindergarten programs. The experimental treatment group score increased signif-
icantly more than the comparison group score; achievement gains of the experi-
mental group approached the sought-after 2-sigma effect of individual tutoring. This
study contributes to research showing that focused early mathematical interventions
help young children develop a foundation of informal mathematics knowledge, espe-
cially for children at risk for later school failure.

Key words: Computers, Curriculum, Early childhood, Equity/diversity, Instructional
intervention, Instructional technology, Preschool/primary, Program/project assessment

Curricula are rarely developed or evaluated scientifically (Clements, 2007). Less
than 2% of research studies in mathematics education have concerned the effects of
textbooks (Senk & Thompson, 2003). This study is one of several coordinated efforts
to assess the efficacy of a scientifically based curriculum; specifically, whether a
preschool mathematics curriculum was developing the mathematical knowledge of
disadvantaged 4-year-old children (Clements, 2002; Clements & Battista, 2000). 

This material is based in part on work supported by the National Science
Foundation Research Grant ESI-9730804, “Building Blocks—Foundations for
Mathematical Thinking, Pre-Kindergarten to Grade 2: Research-based Materials
Development.” Any opinions, findings, and conclusions or recommendations
expressed in this article are those of the authors and do not necessarily reflect the
views of the National Science Foundation. The curriculum evaluated in this
research has since been published by the authors, who thus now have a vested
interest in the results. An external auditor oversaw the research design, data collec-
tion, and analysis, and five researchers confirmed the findings and procedures. The
authors, listed alphabetically, contributed equally to the research.
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Building Blocks is a NSF-funded pre-K to grade 2 mathematics curriculum
development project designed to comprehensively address recent standards for early
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ment of mathematical activity. To do so, the materials integrate three types of media:
computers, manipulatives (and everyday objects), and print. Pedagogical founda-
tions were similarly established; for example, we reviewed research using computer
software with young children (Clements, Nastasi, & Swaminathan, 1993; Clements
& Swaminathan, 1995; Steffe & Wiegel, 1994). This research showed that
computers can be used effectively by children as young as 3 or 4 years of age and
that software can be made more motivating and educationally effective by, for
example, using animation and children’s voices and giving simple, clear feedback.

The phase of Subject Matter A Priori Foundation was used to determine subject
matter content by considering what mathematics is culturally valued (e.g., NCTM,
2000) and empirical research on what constituted the core ideas and skill areas of
mathematics for young children (Baroody, 2004; Clements & Battista, 1992;
Fuson, 1997), with an emphasis on topics that were mathematical foundational,
generative for, and interesting to young children (Clements, Sarama, et al., 2004).
One of the reasons underlying the name we gave to our project was our desire that
the materials emphasize the development of basic mathematical building blocks
(the second meaning of the project’s name)—ways of knowing the world mathe-
matically—organized into two areas: spatial and geometric competencies and
concepts, and numeric and quantitative concepts. Research shows that young
children are endowed with intuitive and informal capabilities in both these areas
(Baroody, 2004; Bransford, Brown, & Cocking, 1999; Clements, 1999; Clements,
Sarama, et al., 2004). Three mathematical themes are woven through both these
main areas: patterns, data, and sorting and sequencing. For example, challenging
number activities do not just develop children’s number sense; they can also
develop children’s competencies in such logical competencies as sorting and
ordering (Clements, 1984).

Perhaps the most critical phase for Building Blocks was Structure According to
Specific Learning Model. All components of the Building Blocks project are based
on learning trajectories for each core topic. First, empirically based models of chil-
dren’s thinking and learning are synthesized to create a developmental progression
of levels of thinking in the goal domain (Clements & Sarama, 2004b; Clements,
Sarama, et al., 2004; Cobb & McClain, 2002; Gravemeijer, 1999; Simon, 1995).
Second, sets of activities are designed to engender those mental processes or
actions hypothesized to move children through a developmental progression. We
present two examples, one in each of the main domains of number and geometry.

The example for number involves addition. Many preschool curricula and prac-
titioners consider addition an inappropriate topic before elementary school
(Clements & Sarama, in press; Heuvel-Panhuizen, 1990). However, research shows
that children as young as toddlers can develop simple ideas of addition and subtrac-
tion (Aubrey, 1997; Clements, 1984; Fuson, 1992a; Groen & Resnick, 1977;
Siegler, 1996). As long as the situation makes sense to them (Hughes, 1986),
young children can directly model different types of problems using concrete
objects, fingers, and other strategies (Carpenter, Ansell, Franke, Fennema, &
Weisbeck, 1993). Such early invention of strategies, usually involving concrete
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objects and based on subitizing and counting, plays a critical developmental role,
as the sophisticated counting and composition strategies that develop later are all
abbreviations or curtailments of these early solution strategies (Carpenter & Moser,
1984; Fuson, 1992a).

Most important for our purpose, reviews of research provide a consistent devel-
opmental sequence of the types of problems and solutions in which children can
construct solutions (Carpenter & Moser, 1984; Clements & Sarama, in press; for
the syntheses most directly related to our work, see Clements, Sarama, et al.,
2004; Fuson, 1992a). Selected levels of the resulting addition learning trajectory
are presented in Figure 1. The left column briefly describes each level and the
research supporting it. The middle column provides a behavioral example illustrating
that level of thinking. The learning trajectory continues beyond the last row in Figure
1 (details are in the Building Blocks curriculum and other sources, Clements &
Sarama, 2007; Clements, Sarama, et al., 2004).

The next step of building the learning trajectory is to design materials and activ-
ities that embody actions on objects in a way that mirrors what research has iden-
tified as critical mental concepts and processes—children’s cognitive building
blocks (the third meaning of the name). These cognitive building blocks are instan-
tiated in on- and off-computer activity as actions (processes) on objects (concepts).
For example, children might create, copy, and combine discrete objects, numbers,
or shapes as representations of mathematical ideas. Offering students such objects
and actions is consistent with the Vygotskian theory that mediation by tools and
signs is critical in the development of human cognition (Steffe & Tzur, 1994).
Further, designs based on objects and actions force the developer to focus on
explicit actions or processes and what they will mean to the students. For example,
on- and off-computer activity sets such as “Party Time” have the advantage of
authenticity as well as serving as a way for children to mathematize these activi-
ties. In one of the “Party Time” activities involving setting the table, children use
different mathematical actions such as establishing one-to-one correspondence,
counting, and using numerals to represent and generate quantities to help get ready
for a party. For these and other activities, the tasks themselves are often variations
of those common in educational curriculum; what is unique in these cases is the more
detailed consideration of actions on objects, the placement of the tasks in the
research-guided learning trajectories, and the use of software.

For the addition trajectory, at the Nonverbal Addition level, children work on a
software program in which they see three toppings on a pizza, then, after the top
of the box closes, one more being placed on the pizza. Children put the same
number of toppings on the other pizza (see the right column in the first row of
Figure 1). The teacher conducts similar activities with children using colored paper
pizzas and manipulatives for toppings. Similarly, the Dinosaur Shop scenario is
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these and other tasks for the levels described in Figure 1 are single items, groups
of items, and numerals. The actions include creating, duplicating, moving,
combining, separating, counting, and labeling these objects and groups to solve
tasks corresponding to the levels. The unique advantages of the software contexts
include making these actions explicit, linking representations (computer manip-
ulatives, spoken number words, and numerals), providing feedback, and guiding
children along the research-based learning trajectories (e.g., moving a level
forward or backward depending on a children’s performance).

An example in geometry involves shape composition (other domains were shapes
and their properties, transformations/congruence, and measurement, all determined
through consensus building, see Clements, Sarama, et al., 2004). The composition
of two-dimensional geometric figures was determined to be significant for students
in two ways. First, it is a basic geometric competence, growing from preschoolers’
building with shapes to sophisticated interpretation and analysis of geometric situ-
ations in high school mathematics and above. Second, the concepts and actions of
creating and then iterating units and higher-order units in the context of constructing
patterns, measuring, and computing are established bases for mathematical under-
standing and analysis (Clements et al., 1997; Reynolds & Wheatley, 1996; Steffe
& Cobb, 1988). The domain is significant to research and theory in that there is a
paucity of research on the trajectories students might follow in learning this content.

The developmental progression was born in observations of children’s explo-
rations (Sarama, Clements, & Vukelic, 1996) and refined through a series of clin-
ical interviews and focused observations (leading to the learning trajectory summa-
rized in Figure 2, adapted from Clements, Wilson, & Sarama, 2004). From a lack
of competence in composing geometric shapes (Pre-Composer), children gain
abilities to combine shapes—initially through trial and error (e.g., Picture Maker)
and gradually by attributes—into pictures, and finally synthesize combinations of
shapes into new shapes (composite shapes). For example, consider the Picture
Maker level in Figure 2. Unlike earlier levels, children concatenate shapes to form
a component of a picture. In the top picture in that row, a child made arms and legs
from several contiguous rhombi. However, children do not conceptualize their
creations (parallelograms) as geometric shapes. The puzzle task pictured at the
bottom of the middle column for that row illustrates a child incorrectly choosing a
square because the child is using only one component of the shape, in this case, side
length. The child eventually finds this does not work and completes the puzzle but
only by trial and error.

A main instructional task requires children to solve outline puzzles with shapes
off and on the computer, a motivating activity (Sales, 1994; Sarama et al., 1996).
The software activity “Piece Puzzler” is illustrated in the third column in Figure 2
(on pages 144–145). The objects are shapes and composite shapes and the actions
include creating, duplicating, positioning (with geometric motions), combining,
and decomposing both individual shapes (units) and composite shapes (units of units).
The characteristics of the tasks require actions on these objects corresponding to each
level in the learning trajectory. Note that tasks in these tables are intended to support
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the developing of the subsequent level of thinking. That is, the instructional task in
the Pre-Composer row is assigned to a child operating at the Pre-Composer level
and is intended to facilitate the child’s development of competencies at the Piece
Assembler level.

Ample opportunity for student-led, student designed, open-ended projects are
included in each set of activities. Problem posing on the part of students appears
to be an effective way for students to express their creativity and integrate their
learning (Brown & Walter, 1990; Kilpatrick, 1987; van Oers, 1994), although few
empirical studies have been conducted, especially on young children. The computer
can offer support for such projects (Clements, 2000). For “Piece Puzzler,” students
design their own puzzles with the shapes; when they click on a “Play” button, their
design is transformed into a shape puzzle that either they or their friends can solve.
In the addition scenarios, children can make up their own problems with pizzas and
toppings, or dinosaurs and boxes.

Our application of formative evaluation phases 5–8 is described in previous publi-
cations (Sarama, 2004; Sarama & Clements, 2002). In brief, we tested components
of the curriculum and software using clinical interviews and observations of a small
number of students to ascertain how children interpreted and understood the objects,
actions, and screen design. Next, we tested whether children’s actions on objects
substantiated the actions of the researchers’ model of children’s mathematical
activity, and we determined effective prompts to incorporate into each level of each
activity. Although teachers were involved in all phases of the design, in phases 7–8
we focused on the process of curricular enactment (Ball & Cohen, 1996), using class-
room-based teaching experiments and observing the entire class for information
concerning the usability and effectiveness of the software and curriculum. Finally,
a content analyses and critical review of the materials at each stage of development
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Head Start (site 2) prekindergarten programs. State funded programs are urban
programs in which most children receive free (63%) or reduced lunch (11%) and
are 58% African American, 11% Hispanic, 28% White non-Hispanic, and 3%
other. Head Start programs are urban programs in which virtually all children are
qualified to receive free (97%) or reduced lunch (2%) and are 47% African
American, 13% Hispanic, 30% White non-Hispanic, and 10% other. At each site,
one classroom was assigned as experimental, one comparison. Both site 1 teachers
had worked with us on the early development of the materials and were considered
excellent teachers by their principal and peers. They agreed to have one selected



147Douglas H. Clements and Julie Sarama

Instrument

The Building Blocks Assessment of Early Mathematics, PreK–K (Sarama &
Clements, in press) uses an individual interview format, with explicit protocol,
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“Pizza Pizzazz” scenario includes activities on recognizing and comparing number,
counting, and arithmetic. In the first three activities, children match pizzas with the
same number of toppings (early number recognition and comparing), create a
pizza with the same number of toppings as a given pizza (counting to produce a
set), and create a pizza that has a given number of toppings given only a numeral
(counting to produce a set that matches a numeral). Later activities in that setting
involve addition (see the third column for Nonverbal Addition and Find Change in
Figure 1). The software’s management system presents tasks, contingent on success,
along research-based learning trajectories. Activities within various scenarios are
introduced according to the trajectory’s sequences. Figure 1 illustrates, for example,
how two activities from the “Dinosaur Shop” scenario are sequenced between two
illustrated activities from the “Pizza Pizzazz” scenario. Off-computer activities, such
as learning center activities, involve corresponding activities. For example, corre-
sponding to the first “Pizza Pizzazz” activity, the teacher sets out a learning center
by hiding paper “pizzas” with different numbers of toppings under several opaque

(a)

(b)

Figure 3. Sample geometry items from the Building Blocks Assessment of Early
Mathematics, PreK–K (Sarama & Clements, in press). (a) Given the illustrated cut-out
shapes, the child is asked to “Put only the triangles on this paper.” (b) The child is asked,
“Pretend you cut this pentagon from one corner to the other. Which shows the two cut pieces?”
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containers and placing one such pizza with three toppings in plain view. Children
lift each container and count the toppings until they find the matching pizza. They
then show the teacher or other adult.

All participating teachers maintained their typical schedule, including circle
(whole-group) time, work at centers, snack, outdoor play, and so forth for the 25
school weeks between pretesting and posttesting. The experimental teachers merely
inserted the Building Blocks activities at the appropriate point of the day. For
example, circle time might include a finger play that involved counting and a brief
introduction to a new center or game. Center time would include individual work
at the curriculum’s software or learning centers, guided by the teacher or aide as
they circulated throughout the room (specific suggestions for guidance are speci-
fied in the curriculum). As a specific example, children might be introduced to new
puzzles such as those at the level of the Picture Maker level of Figure 2, then engage
in physical puzzles with pattern blocks and tangrams in a learning center, or similar
puzzles in the “Piece Puzzler” software activity. Teachers guided children by
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ison teacher used Creative Curriculum (Teaching Strategies Inc., 2001) as well as
some “home-grown” curricular activities for mathematics. Visits to those classrooms
indicated that each was following the curricula as written.

Analyses

To assess the effectiveness of the curriculum, we conducted factorial repeated
measures analyses, with time as the within-group factor, and two between-group
factors, school and treatment, evaluating differences in achievement from pre- to
posttest on both tests (children did work in the same class, but the software and center
activities were engaged in individually, so the child was used as the unit of analysis).
In addition, two effect sizes were computed for each test. We compared experimental
posttest (E2) to the comparison posttest (C2) scores as an estimate of differential
treatment effect. We also compared experimental posttest to experimental pretest
(E2 to E1) scores as an estimate of the achievement gain within the experimental
curriculum. Effect sizes were computed using adjusted pooled standard deviations
(Rosnow & Rosenthal, 1996). We used the accepted benchmarks of .25 or greater
as an effect size that has practical significance (i.e., is educationally meaningful),
.5 for an effect size of moderate strength, and .8 as a large effect size (Cohen, 1977).

RESULTS

Table 4 presents the raw data for the number and geometry tests. We computed
factorial repeated measures analyses, originally including gender; as no main effects
or interactions were significant, we present here only the more parsimonious model.

Table 4
Means and Standard Deviations for Number and Geometry Tests by Site and Group

Building Blocks
Site 1 Site 2 Total

Test Pre Post Pre Post Pre Post
Number 12.38 36.55 6.13 20.17 9.67 29.46

(10.94) (11.12) (6.61) (13.29) (9.70) (14.47)
Geometry 9.53 17.69 7.53 12.87 8.79 15.91

(2.31) (2.64) (1.86) (3.64) (2.26) (3.81)
Comparison

Site 1 Site 2 Total
Test Pre Post Pre Post Pre Post
Number 14.07 26.86 3.17 9.56 8.44 17.93

(9.39) (8.64) (2.72) (9.34) (8.69) (12.48)
Geometry 9.56 12.12 7.37 8.62 8.63 10.64

(1.48) (2.10) (1.40) (3.76) (1.89) (3.35)
Note. These were the data used for the factorial analyses, so they represent data on those children who
took all subtests at both the pretest and posttest.
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Table 5
Means and Standard Deviations for Number and Geometry Subtests by Treatment Group

Building Blocks Comparison
Subtest Pre Post Pre Post Maximum

Number
Verbal 1.13 2.88 0.84 1.78 6
Counting (1.10) (1.51) (.93) (1.39)
Object 5.53 10.97 4.66 8.16 16
Counting (4.71) (4.20) (3.89) (4.71)
Comparing 1.10 2.13 0.89 1.58 5

(0.99) (0.90) (0.85) (0.96)
Numerals 0.60 3.90 0.32 2.48 5

(1.59) (1.86) (1.16) (2.38)
Sequencing 0.07 1.20 0.05 0.39 3

(0.25) (1.24) (0.23) (0.72)
Subitizing 0.18 2.81 0.23 1.00 10

(0.35) (2.63) (0.72) (1.27)
Adding/ 0.93 4.20 0.68 2.23 12
Subtracting (1.68) (2.80) (1.38) (2.57)
Composing 0.13 1.37 0.16 0.32 15

(0.51) (2.31) (0.72) (0.91)
Total 9.67 29.46 7.83 17.93 72

(9.70) (17.95) (8.28) (12.48)
Geometry, Measurement, Patterning

Shape 5.42 7.34 5.66 5.89 10
Identification (0.92) (1.16) (0.93) (1.42)
Composition 1.07 4.47 1.23 2.01 11

(1.10) (1.92) (1.36) (1.65)
Congruence 1.02 1.32 1.05 1.20 2

(0.38) (0.35) (0.39) (0.52)
Construction 0.09 0.61 0.09 0.38 2

(0.23) (0.56) (0.29) (0.48)
Orientation 0.15 0.31 0.08 0.08 1

(0.21) (0.28) (0.15) (0.14)
Turns 0.38 0.41 0.21 0.27 1

(0.49) (0.50) (0.42) (0.45)
Measurement 0.10 0.19 0.08 0.08 1

(0.31) (0.40) (0.18) (0.23)
Patterning 0.50 1.26 0.23 0.73 2

(0.55) (0.78) (0.42) (0.67)

Total 8.79 15.91 8.63 10.64 30
(2.26) (3.81) (1.89) (3.35)

Note. 





155Douglas H. Clements and Julie Sarama

description of the different abilities of the two groups. For the first object counting
item, about 66% of both experimental and comparison children could provide a
verbal response at pretest. At posttest, 100% of experimental children did so,
however 16% of the comparison children reproduced the set but could not give the
verbal responses and 23% gave no response. On a number comparison item, exper-
imental children increased their use of a counting strategy more than comparison
children, over half of whom did not respond. On items in which children counted
scrambled arrangements of objects, the experimental group increased their use of
strategies more than the comparison group, especially systematic strategies such
as progressing top to bottom, left to right. On the arithmetic items, more children
used objects, and fewer used verbal strategies (a small minority on the comparison
item, “how many dogs wouldn’t get a bone?”). 

Examining the addition learning trajectory reveals the curriculum’s positive
effects in more detail. Increases in percentage correct from pretest to posttest for
four illustrative items were as follows: 2 + 1 (increase of 37 for experimental vs.
23 for comparison), 3 + 2 (47 vs. 13) 5 + 3 (23 vs. 16), 6 – 4 (how many dogs
wouldn’t get a bone?—23 vs. 10). The curriculum follows the learning trajectory
described in Figure 1. On average, children worked on Nonverbal Addition activ-
ities 4 times, half on computer (see Figure 1) and half off computer. Teachers

Table 6—Continued
Experimental Comparison
Pre Post Pre Post
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modeled nonverbal strategies but also encouraged post hoc verbal reflection.
Children worked on Small Number Addition activities 6 times, 2 on and 4 off
computer (Figure 1). Teachers focused on the meaning of addition as combining
two disjoint sets, expressed informally. Children worked on Find Result activities
6 times, 2 on and 2 off computer. Use of a child’s invented counting strategies to
solve join, result unknown problems was emphasized. Finally, children worked on
Find Change problems 2 times, half on and half off computer. Both on- and off-
computer activities emphasized counting on from a given number. The results of
these activities is shown in the greater than double increase in correctness by the
experimental group, as well as their greater use of solution strategies overall and
greater use of more sophisticated strategies, such as verbal counting strategies, for
most tasks. For example, on 5 + 3, 33% of the experimental children, compared to
19% of the comparison children, used objects, and 23% of the experimental chil-
dren, compared to less than 7% of the comparison children, used verbal counting
strategies. These results are particularly striking when considering that such tasks
are normally part of the first grade curriculum.

Table 6 shows four codes describing children’s strategies on a shape composi-
tion task. By posttest, experimental children were far more likely to combine
shapes without leaving gaps; turn shapes into correct orientation prior to placing
them on the puzzle; search for a correct shape; and solve the puzzle immediately,
systematically, and confidently. This increased use of more sophisticated shape
composition strategies suggests the development of mental imagery. 

This development of more sophisticated strategies in the experimental group,
along with the large relative gains on the subtest score, more than four times as large
as those made by the comparison group (Table 5), substantiate the curriculum’s posi-
tive effect on geometric composition. The curriculum engages children in several
activities to develop this competence, including creating free-form pictures with a
variety of shape sets, such as pattern blocks and tangrams, and solving outline
puzzles with those same shape sets. Informal work with three-piece foam puzzles
and clay cutouts were conducted for several weeks during mid fall. In April, the
outline puzzles, which provided the most guidance along the learning trajectories,
were introduced. Most children in the present classrooms worked about 2 days on
the puzzles designed for children at the Pre-Composer level (see the third column
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of the Building Blocks materials, with achievement gains near or approximately
equal to those recorded for individual tutoring. This provides support for the effi-
cacy of curricula built on comprehensive research-based principles. The Building
Blocks materials include research-based computer tools that stand at the base,
providing computer analogs to critical mathematical ideas and processes. These
are used, or implemented, with activities that guide children through research-based
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Ramey & Ramey, 1998). It extends this research by suggesting that a comprehen-
sive mathematics curriculum following NCTM’s standards (2000) can increase
knowledge of multiple essential mathematical concepts and skills (beyond number).
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